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Abstract

The market structure for many mineral industries can be described as oligopoly

with potential for Stackelberg leadership. This paper derives and analyzes dynamically

consistent extraction equilibria in a two-period discrete-time “Truly” Stackelberg (TS)

model of non-renewable resource extraction, where firms move sequentially within each

period and where both the leader and follower have market power. We show how the

leader may be able to manipulate extraction patterns by exploiting resource constraints.

Whether the leader wants to speed up its own production relative to the Cournot-Nash

(CN) equilibrium depends on the shape of its iso-profit curve, which is affected by

the two firms’ relative stock endowments and relative production costs. If the leader

extracts faster, then the follower extracts slower, but in aggregate the industry extracts

faster. Unlike static Stackelberg games, the follower does not necessarily have a second

mover disadvantage.
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1 Introduction

This paper is motivated by evidence that the supply-side of the market for many

major minerals is dominated by a few large firms surrounded by one or more other

relatively large firms. Table 1 shows that the market structure for ten important

minerals is clearly oligopolistic, since the top five firms account for more than half of

world production for four minerals (diamonds, nickel, platinum, and tin), and for more

than a third of world production for seven minerals, including aluminium, copper, and

phosphate.1 Furthermore, in the platinum, diamond, nickel, and tin industries the

largest firm controls nearly a fifth of the market or more, and the size of the second

largest firm in these industries suggests many mineral industries may more closely

resemble a Stackelberg leader-follower relationship rather than either a Dominant-

Firm/Competitive-Fringe (DF) or a Cournot-Nash (CN) framework. For these highly

concentrated mineral markets with a potential for Stackelberg leadership, the evolution

of market production is especially important for those manufacturers that depend upon

a reliable supply of these minerals. Therefore, it is important to understand how the

equilibrium extraction patterns are determined under such a market structure.

This paper derives the dynamically consistent equilibrium to a two-period discrete-

time non-renewable resource model in which the leader moves before the follower within

each period in choosing its output and in which both the leader and the follower act

as price searchers. This Truly Stackelberg (TS) model differs from CN models by

the leader-follower sequencing of production choices within each period, and it differs

from DF models both by the leader-follower sequencing of production choices and by

the price searching behavior of the follower. While the DF and CN equilibria have

been extensively characterized in the literature, the TS equilibria has no antecedent.2

Relative to both the CN and DF equilibria, the TS game exhibits a much richer set of

equilibria.

When firms have stocks sufficient to last at most two periods, the equilibria may be

analyzed using simple piece-wise best-response functions in two-dimensional graphs.

1The 4-firm HHI index for these minerals range from 104 for silver (very competitive) to 2163 for platinum,
which is sufficiently concentrated that in the U.S. government approval would be required for mergers.

2There exists a fourth class of games which we do not consider here: sequential-move DF equilibria, where
the leader moves first within each period but the follower is a price searcher. These equilibria, however, are
quite different from the TS equilibria we study. In those games, with a price taking follower, the follower’s
reaction to an increase in the leader’s output is to decrease his output by one unit for every unit increase in
the leader’s production. This has the effect that the leader’s strategic effect on the follower exactly offsets
the effect he has upon market price, hence both the leader and follower implicitly act as price takers in
equilibria in which the follower produces over both periods.
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Table 1: Market Share of the World’s Top 5 Companies for Major Minerals Production (%
of World Production).

Mineral 1st 2nd 3rd 4th 5th Top Five
Aluminium Rusal Alcan Alcoa CHINALCO Norsk Hydro HHI=382

11% 10% 9% 8% 4% 42%

Copper Codelco Freeport BHP Billiton Xstrata Rio Tinto HHI=303
11% 9% 7% 6% 4% 37%

Diamond Anglo Alrosa Gropu Botswana BHP Billiton Rio Tinto HHI=1230
24% 20% 13% 7% 6% 70%

Gold Barrick Newmont AngloGold Freeport GoldCorp HHI=173
9% 7% 5% 3% 3% 27%

Nickel Norilsk CVRD Jinchuan Xstrata BHP Billiton HHI=668
19% 13% 8% 7% 5% 52%

Phosphate Morocco Mosaic Tunisia PotashCorp Jordan HHI=403
15% 11% 5% 4% 4% 39%

Platinum Anglo Impala Lonmin Norilsk Aquarius HHI=2179
36% 25% 11% 11% 4% 87%

Silver BHP Billiton Fresnillo KGHM Pan American Goldcorp HHI=104
6% 5% 5% 3% 3% 22%

Tin Yunnan Tin PT Timah Minsur Thaisarco Malaysia HHI=940
18% 16% 14% 10% 8% 66%

Zinc Korea Zinc Nyrstar Hindustan Xstrata Glencore HHI=170
8% 7% 5% 4% 4% 28%

Source: Calculated by the authors based on U.S.G.S. (2011). HHI is the Herfindahl-Hirschman Index, HHI=
∑5
i=1 s

2
i , where si is the percent

share of world production from each firm.

This allows us to clearly highlight the effect of differences in resource constraints and

extraction costs on the equilibrium selection by the leader. In addition, using dis-

crete periods allows us to differentiate between sequential-move and simultaneous-move

games. In continuous-time models, it is impossible to distinguish between CN and TS

games, since moves are implicitly made simultaneously. These two features allow us

to delineate which results are due to strategic manipulation by the leader in a sequen-

tial game and which are due to the follower having market power. Furthermore, even

though our games end after two periods, these two periods characterize the final sub-

game to any sequence of greater length. Thus, our results allow us to infer how games

with three or more periods might unfold.

The paper makes four main contributions. First, within the CN, DF and TS games,

we show the effects relative resource stock constraints and relative marginal production

costs have both upon the order and the rate of extraction. In all of these games there

exist equilibria in which one or both firms are at a corner solution, where a firm

either produces its entire stock in period 1 or withholds all of its stock for production

in period 2.3 Thus, this feature of the non-renewable resource equilibria transcends

3Corner solutions also occur in static Stackelberg models (i.e., where firms are not constrained by resource
stocks). In static Stackelberg games with linear demand, p = p̄− q1 − q2, and constant marginal production
costs, c1 and c2, to firms 1 and 2, respectively, it can be shown that for c2 < 2c1 − p̄, only firm 2 produces,
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assumptions about whether players are both price searchers and whether players move

simultaneously or sequentially within each period.

Second, we find that in the sequential-move TS game situations arise in which the

leader is able to select among several feasible equilibria in a manner that does not occur

in either CN or DF games. In the TS game, the leader is able to manipulate extraction

patterns by exploiting the resource endowment constraints. Specifically, there are

instances in the TS game where even though equilibria in which both firms produce

over both periods are feasible (and would occur if the game were a simultaneous-

move CN game), the leader prefers, and has the power to select an equilibrium in

which either the follower or the leader exhausts his entire stock in only one period.

These issues of equilibrium selection do not arise in simultaneous-move CN or DF non-

renewable resource games, since in those games, equilibria are uniquely determined by

the intersection of best-response functions.

Third, we show that both firms’ iso-profit curves becomes asymptotic when the

firm’s first period production equals a certain fraction of its stocks. For values of first

period production less than this fraction of the stock, firm 1’s profit is decreasing in

its own first period production, which is opposite to what occurs in static Stackelberg

games. In static Stackelberg games — where firms are unrestricted in total output by

a stock constraint — if relative costs are such that the leader can force the follower into

zero production, then those conditions continue to hold even if the game is extended to

two or more periods. In contrast, with non-renewable resources, as long as both firms’

marginal production costs are less than the choke price, both firms will eventually

produce. Therefore, in non-renewable TS games, the issues revolve around the timing

of production, rather than the existence of production.

Fourth, we analyze the effects of allowing the leader to move first has upon the

aggregate extraction rate, consumers’ welfare and the follower’s profits. Relative to the

CN, the leader wants to increase its first period production if the follower’s resource

stock is relatively small or if the follower’s cost is relatively large, and the leader wishes

to decrease its first period production if the follower’s resource stock is relatively large

or if the follower has sufficient cost advantage. When both firms have market power, an

increase in the leader’s first period production by one unit causes the follower to lower

his first period production by less than one unit. Therefore, if the leader extracts faster,

the follower extracts slower and total extraction increases, all else constant. However,

unlike static Stackelberg games, we show that the follower does not necessarily have a

and for c2 >
p̄+2c1

2 only firm 1 produces.
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second mover disadvantage.

Oligopolistic extraction of non-renewable resources have been analyzed extensively

since the oil price shocks in the 1970s. The supply side of the oil market has been

described by either the DF framework, with a cartel facing a large number of compet-

itive fringe producers (Salant, 1976), or the CN framework, with oligopolists moving

simultaneously (Loury, 1986; Polasky, 1992). The simultaneous DF framework has

been analyzed by Pindyck (1978), Salant (1982), Ulph and Folie (1980b), Groot et al.

(1992), and Benchekroun et al. (2009), inter alia. The sequential DF framework has

been explored by Gilbert (1978), Ulph and Folie (1980a), Newbery (1981, 1992), Groot

et al. (2000, 2003), and Benchekroun and Withagen (2012). These papers distinguish

between open-loop Nash equilibria, where each supplier chooses the extraction path as

a function of the initial resource stock and time, and closed-loop (or feedback) subgame

perfect Nash equilibria, where extraction strategies depend on current stocks. All of

these papers, however, use a continuous time framework, which implicitly assumes that

firms move simultaneously within each period. We find that the CN and DF equilibria

in simultaneous-move games are qualitatively similar and attribute this to the fact that

both are Nash equilibria found by equating best-responses. Eswaran and Lewis (1985),

using a discrete-time framework, show that the open-loop and feedback CN equilibria

are identical only when each firm’s decision rule is independent of the stocks of all

other firms, and Hartwick and Brolley (2008) show that such a condition is satisfied as

long as initial resource stocks guarantee all the firms extract in every period. However,

as stated in Benchekroun et al. (2010), none of the literature has fully characterized

equilibrium extraction patterns of non-renewable resources under the TS setting for a

finite number of players. This is what the current paper provides: we show the effect

sequential moves and market power by the follower have upon a two-period discrete

time non-renewable resource model.

The remainder of the paper is organized as follows. Section 2 describes the model

and derives the necessary conditions that characterize each equilibrium. Section 3

examines the properties of the Nash equilibrium for the simultaneous-move, CN and

DF models. Section 4 derives the equilibria for the sequential-move, TS model in

which both the leader and follower have market power, and determines the effect,

relative to the CN equilibrium, the TS equilibrium has upon on the rate of extraction,

consumers’ surplus, and follower’s profits. Section 5 concludes. Derivations of the

necessary conditions for the CN, TS, and DF equilibria plus proofs of propositions are

placed in the On-line Appendix.

4



2 Model Set Up

Let firm 1 denote the leader in the TS game or the dominant firm in the DF game and

let firm 2 denote the follower in the TS game or the competitive fringe in the DF game.

In the CN game, of course, the distinction between firm 1 and firm 2 is important only

insofar as stocks or costs of production may differ between the two firms. The stocks

held by firm 1 are S1 and the stocks held by firm 2 are S2. Demand in each period is

linear, with pt = p̄−Qt, where Qt is total production in period t = 1, 2. Firm 1 faces

marginal costs of production c1 and firm 2 faces marginal costs of production c2. Both

firms will produce eventually so long as 0 < c1, c2 < p̄. A dollar earned in period 2 is

discounted at rate β ≡ 1
1+r , where r is the interest rate.

Let q1 and q2 denote the first period production by firms 1 and 2, respectively.

Since we restrict our attention to two-period games, second period production is simply

Si − qi, i = 1, 2. Firms’ discounted profits are:

π1 = (p̄− c1 − q1 − q2) q1 + β [p̄− c1 − (S1 − q1)− (S2 − q2)] (S1 − q1) , (1a)

π2 = (p̄− c2 − q1 − q2) q2 + β [p̄− c2 − (S1 − q1)− (S2 − q2)] (S2 − q2) . (1b)

Consider the behavior of firm 2. For firm 2, first period production is governed by
q2 = S2

0 < q2 < S2

q2 = 0

 as
∂π2

∂q2


>

=

<

 0, (2)

where

∂π2

∂q2
=

p̄− c2 − q1 − 2q2 − β [p̄− c2 − (S1 − q1)− 2(S2 − q2)] if CN or TS

p̄− c2 − q1 − q2 − β [p̄− c2 − (S1 − q1)− (S2 − q2)] if DF
. (3)

Taking the production choice of firm 1 as given, firm 2 produces its entire stock in

period 1 (q2 = S2) when the present value of its marginal profits in the first period

is greater than that in the second period; firm 2 produces its entire stock in period 2

(q2 = 0) when the present value of its marginal profits in the first period is less than

that in the second period; and firm 2 produces in both periods (0 < q2 < S2) only

if its marginal profits are equal in present value across the periods. When firm 2 is

a price taker (DF), marginal profits in each period are the difference between price
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and marginal cost; when firm 2 is a price setter (CN or TS), marginal profits are the

difference between firm 2’s marginal revenue and marginal costs.

Setting ∂π2
∂q2

= 0 and solving for q2 yields firm 2’s best-response function:

q2 =


0 B2(q1) ≤ 0

B2(q1) if 0 < B2(q1) < S2

S2 B2(q1) ≥ S2

. (4)

where

B2(q1) =


(p̄−c2)(1−β)+β(S1+2S2)

2(1+β) − 1
2q1 if CN or TS

(p̄−c2)(1−β)+β(S1+S2)
(1+β) − q1 if DF

(5)

is the interior portion (i.e., where both firms have positive production) of firm 2’s

best-response function. When firm 2 is a DF price taker, rather than a CN or TS

price setter, B2(q1) has both a higher intercept and a steeper slope when plotted as a

function of q1. While static Stackelberg games have piece-wise best-response curves,

with q2 = B2(q1) when B2(q1) > 0 and q2 = 0 when B2(q1) ≤ 0, the stock constraint

on total production in the non-renewable resource model gives a third possible interval

to the best-response function, with q2 = S2 when B2(q1) ≥ S2.

Firm 1’s behavior depends upon whether the game is played as a simultaneous-move

CN or DF game, or as a sequential-move TS game. Simultaneous-move games are

solved by finding the Nash equilibrium. Sequential-move games are solved by finding

the subgame-perfect Nash equilibrium. In each case, firm 1’s first period output is

chosen to satisfy 
q1 = S1

0 < q1 < S1

q1 = 0

 as
dπ1

dq1


>

=

<

 0, (6)

where

dπ1

dq1
=


∂π1
∂q1

if CN or DF

∂π1
∂q1

+ ∂π1
∂q2

dq2
dq1

if TS
, (7)

with
∂π1

∂q1
= p̄− c1 − 2q1 − q2 − β [p̄− c1 − 2 (S1 − q1)− (S2 − q2)] , (8)

∂π1

∂q2
= −[q1 − β(S1 − q1)], (9)
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and

dq2

dq1
=

−1/2 if 0 < q2 < S2 and TS

0 if q2 = 0, or q2 = S2, or DF, or CN
. (10)

Thus, firm 1, like firm 2, has two corner solutions as well as an interior solution which

might occur, depending on whether firm 1’s marginal profits are positive, negative,

or zero at equilibrium quantities. Unlike firm 2, however, firm 1 always behaves as

a price setter. In addition, unlike firm 2, firm 1’s choice depends upon the total

derivative in (7). This is equal to the partial derivative in the simultaneous-move CN

and DF games, but includes the additional “strategic” term, ∂π1
∂dq2

dq2
dq1

, when the game

is a sequential-move TS game. This strategic term tells how a change in firm 1’s first

period production affects firm 1’s profits through the induced change in firm 2’s first

period production. When dq2
dq1

= 0, however, as occurs whenever firm 2 is at a corner

solution where q2 = 0 or q2 = S2, the sequential-move TS and simultaneous-move game

CN game yield identical equilibria. While CN equilibria differ from the TS equilibria

only by the presence of the strategic term in firm 1’s choice conditions in the TS

equilibria, the DF equilibria differ from the TS equilibria both by whether firm 2 is a

price taker in DF versus a price setter in TS, and by how firm 1’s necessary conditions

include the strategic term in the TS but not in the DF.4

For both the CN and DF equilibria, each firm moves simultaneously, so the Nash

equilibrium is defined by the intersection of best-response functions. Setting dq2
dq1

= 0

and solving ∂π1/∂q1 = 0 for q1 yields firm 1’s best-response function:5

q1 =


0 B1(q2) ≤ 0

B1(q2) if 0 < B1(q2) < S1

S1 B1(q2) ≥ S1

, (11)

where

B1(q2) =
(p̄− c1) (1− β) + β(2S1 + S2)

2(1 + β)
− 1

2
q2 (12)

is the interior portion of firm 1’s best-response function.

Since we restrict our attention to two-period games, the stocks held by the firms

must be such that in equilibrium no firm wishes to produce in period 3. In terms of

4A fourth possibility, not explored here, is that firm 2 acts as a price taker and firm 1 moves sequentially.
In that case, we see from the price-taker condition in (3) that dq2/dq1 = −1 when firm 2 is at an interior
solution.

5In the Figs. 4 - 8, we plot B−1
1 (q2), which becomes vertical at q1 = 0 and q1 = S1.
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the endogenous period 2 outputs, S1 − q1 and S2 − q2, this requires that each firm’s

marginal profit in period 2 is greater than the present value of marginal profit of taking

one more unit to period 3, given that neither firm is producing in period 3:

β (p̄− ci) ≤


p̄− ci −

(
2− dq2

dq1

)
(Si − qi)− (Sj − qj) if firm 1 in TS

p̄− ci − (Si − qi)− (Sj − qj) if firm 2 in DF

p̄− ci − 2(Si − qi)− (Sj − qj) otherwise

, i 6= j = 1, 2.

(13)

The Nash equilibrium in the CN and DF models occurs at the intersections of the

two firm’s best-response functions. In these cases the iso-profit curves of the firms are

useful for welfare analysis, but are not otherwise necessary for finding the equilibrium.

In the TS model, however, the iso-profit curves for firm 1 play an important role in that

firm’s equilibrium selection. An iso-profit curve for firm 1, which graphs combinations

of first period output by firm 1 and firm 2 that yield a constant level of profits, Π1, for

firm 1, is given by:6

q2 =
−(1 + β)q2

1 + [(1− β)(p̄− c1) + (1 + β)S1 + βS2]q1 + βp̄S1 −Π1

(1 + β)q1 − βS1
. (14)

Equation (14) shows that firm 1’s iso-profit curve becomes asymptotic at q1 = βS1/(1+

β). Since 0 < β/(1 + β) < 1, this asymptote occurs within the feasible values of

q1. This property of the iso-profit curve highlights an important difference between

two-period non-renewable resource Stackelberg models and simple static Stackelberg

models. When q1 > βS1/(1 + β), the iso-profit curve for firm 1 is the familiar bell-

shaped curve that occurs in static Stackelberg models where firm 1’s iso-profit curves

have slope zero when they cross firm 1’s interior best-response curve. In this case

profits to firm 1 are increasing as q1 increases along firm 1’s best-response curve. But

for q1 < βS1/(1 + β), firm 1’s iso-profit curve is a U-shaped curve which has profits

increasing as q1 decreases along firm 1’s best-response curve. In addition, we see from

(9) that the effect firm 2’s production has upon firm 1’s profits also depends upon

which side of the asymptote the equilibrium occurs. When q1 > βS1/(1 + β), firm 1’s

profits are decreasing in firm 2’s first period production (as occurs in static Stackelberg

games), but when q1 < βS1/(1+β), firm 1’s profits are increasing in firm 2’s first period

production.

Finally, for the purpose of evaluating welfare, let Q = q1 + q2 denote the total

6The iso-profit curve for firm 2 is obtained by reversing firm subscripts in (14).
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Table 2: Simultaneous-Move Equilibria: CN and DF

Period 1 First Order CN Cost DF Cost Cost
Equilibrium Production Necessary Conditions Restrictions Restrictions Regions

12 q1 = S1, q2 = S2
∂π1
∂q1

> 0, ∂π2
∂q2

> 0 None None (i), (ii), (iii)

12→ 12 0 < q1 < S1, 0 < q2 < S2
∂π1
∂q1

= 0, ∂π2
∂q2

= 0 See Text See Text (i), (ii), (iii)

12→ 1 0 < q1 < S1, q2 = S2
∂π1
∂q1

= 0, ∂π2
∂q2

> 0 c2 <
c1+p̄

2
c2 <

c1+p̄
2

(ii), (iii)

12→ 2 q1 = S1, 0 < q2 < S2
∂π1
∂q1

> 0, ∂π2
∂q2

= 0 c2 > 2c1 − p̄ c2 > c1 (i), (ii)

1→ 2 q1 = S1, q2 = 0 ∂π1
∂q1

> 0, ∂π2
∂q2

< 0 c2 >
c1+p̄

2
c2 >

c1+p̄
2

(i)

1→ 12 0 < q1 < S1, q2 = 0 ∂π1
∂q1

= 0, ∂π2
∂q2

< 0 c2 >
c1+p̄

2
c2 >

c1+p̄
2

(i)

2→ 1 q1 = 0, q2 = S2
∂π1
∂q1

< 0, ∂π2
∂q2

> 0 c2 < 2c1 − p̄ c2 < c1 (iii)

2→ 12 q1 = 0, 0 < q2 < S2
∂π1
∂q1

< 0, ∂π2
∂q2

= 0 c2 < 2c1 − p̄ c2 < c1 (iii)

production of both the leader and follower in period 1, and let S = S1 + S2 denote

total stocks. Then consumers’ surplus (CS) is the discounted present value of the

stream of consumer surplus:

CS(Q) =

∫ Q

0
(p̄− z)dz − (p̄−Q)Q+ β

{∫ S−Q

0
(p̄− z)dz − [p̄− (S −Q)](S −Q)

}
= Q2/2 + β(S −Q)2/2. (15)

From this expression we see that consumers’ surplus is increasing in first period pro-

duction if, and only if, Q > βS/(1 + β).

3 Simultaneous-Move Equilibria: CN and DF

Since the literature has focused on either the CN or DF simultaneous-move equilibria,

we begin by briefly considering these equilibria. In both cases, each firm moves simul-

taneously within periods. Both firms act as price setters in the CN equilibrium, but

only the dominant firm acts as a price setter in the DF equilibrium. Since the moves

are made simultaneously, equilibria in each game are found by equating the two best-

response functions, (4) and (11). Given that both firm’s best-response curves are each

piecewise linear functions, each equilibrium—for a given set of costs and stocks—is

unique.

Depending upon cost and stock conditions, Table 2 shows that there exist up to

eight possible types of two-period equilibria for both the CN and DF games. The

notation describing each equilibrium indicates which firms are active in each period.
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Thus, “1 → 2” implies that firm 1 produces only in period 1 while firm 2 produces

only in period 2, while “12” implies both firms exhaust in period 1, “12→ 12” implies

both firms produce in each of period 1 and 2, and so on.7 The necessary conditions for

the CN equilibria are derived in Appendix A and the necessary conditions for the DF

equilibria are derived in Appendix D, which are available in the on-line supplement.

There exist stocks S1 and S2 such that the “12” equilibrium occurs for all feasible

marginal costs, i.e., for all 0 ≤ c1, c2 < p̄ for both the CN and DF games. But

the remaining equilibria occur only for particular relative costs. Similar to previous

literature, we show that in the both the CN and DF equilibria, there are three relevant

cost regions, in order of decreasing relative costs to firm 2. For the CN equilibria, these

are (i) c1+p̄
2 < c2 ≤ p̄, (ii) 2c1 − p̄ ≤ c2 ≤ c1+p̄

2 , and (iii) 0 ≤ c2 < 2c1 − p̄. For the

DF equilibria, the cost regions are (i) c1+p̄
2 < c2 ≤ p̄, (ii) 2c1 − p̄ ≤ c2 ≤ c1, and (iii)

0 ≤ c2 < c1.

For each of the three cost regions, the necessary conditions delineate a unique set of

feasible stocks in the S1-S2 space which yield each equilibria. These are shown in Fig.

1a-1c for the CN equilibria by cost region, with each equilibrium ordering of production

shaded differently. The unshaded areas in the positive orthant marked “exhaustion in

3 or more periods” represent stock values which in equilibrium require three or more

periods to extract. The Si values marked by SCNi represent the lower boundaries of

the equilibrium 12→ 12 in the stock i direction.

In Fig. 1a, drawn for cost region (i) where firm 2 has much higher costs than firm

1, depending upon the relative stocks up to five two-period equilibria may occur: 12,

1 → 2, 1 → 12, 12 → 12, and 12 → 2. Equilibrium 12 → 12, however, exists in cost

region (i) only if c2 is sufficiently small.8 In all of these equilibria, firm 1, which has

the cost advantage, produces in period 1. Firm 2 only produces in period 1 when both

firms have very small stocks (equilibrium 12) or when firm 2 has large stocks relative

to firm 1 (equilibrium 12→ 2). When costs are relatively equal, as in cost region (ii)

as depicted in Fig. 1b, only four two-period equilibria exist for all cost values within

this range: 12, 12→ 1, 12→ 2, and 12→ 12. In each equilibrium both firms produce

in period 1. In cost region (iii), where firm 2 has the cost advantage, there are again

up to five equilibria in which production occurs over two periods: 12, 12→ 1, 12→ 12,

7Equilibrium “. → 12” in which q1 = q2 = 0 does not exist because if both firms are willing to produce
their entire stock in the same period as the other firm, then both do better by producing in the first period,
since period 2 profits are discounted at rate β < 1.

8In cost region (i), the upper bound for equilibrium 12→ 12 is the exhaustion constraint for firm 2. When
evaluated at SCN1 , this exhaustion condition is greater than SCN2 only if c1+p̄

2 < c2 < [(2+3β)p̄+2c1]/(4+3β).
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2 → 1, and 2 → 12.9 These equilibria are depicted in Fig. 1c. In each equilibrium

in cost region (iii), firm 2 produces in period 1, and firm 1 only produces in period 1

when both firms have very little stock (equilibrium 12) or when firm 1 has relatively

large stocks (equilibrium 12→ 1).

Fig. 2 compares the CN and DF equilibria for the case where costs are in cost region

(ii) for both the CN and DF equilibria, i.e., where c1 < c2 < (c1 + p̄)/2. In Fig. 2, areas

12, 12 → 2, 12 → 1, and 12 → 12 have the same extraction pattern in both games.

However, in both areas 12→ 2 and 12→ 12, where firm 2 produces in both periods, first

period production is greater under the DF equilibrium than in the CN equilibrium.10

In areas 12 and 12 → 1, production is unchanged, since in both firm 2 exhausts in

period 1. Thus, for those stocks such that the DF equilibrium sequence remains the

same as the CN equilibrium, production either remains constant or increases in the DF

equilibrium. We also show in Appendix D that for these equilibria where production

sequencing changes, the DF equilibrium exceeds total production in period one. Similar

comparisons can be made in the other cost regions.

While Fig. 2 emphasizes the differences between the CN and DF equilibria, there

are two important similarities between the equilibria. First, for each cost region, each

equilibria occupies a mutually exclusive S1-S2 space. For example, in Fig. 1a the lower

boundary of the 12 → 12 region in the S1 direction is SCN1 , and this boundary also

forms the upper bound in the S1 direction for equilibrium 12 → 2. Similarly, SCN2

forms both the lower bound in the S2 direction for equilibrium 12→ 12 and the upper

bound in the S2 direction for equilibrium 1 → 12. Similar statements may be made

for the boundaries to each equilibrium within each cost region in both the CN and DF

games. This is summarized in the following:

Proposition 1. For both the CN and DF games, for given relative costs and stocks,

there exists one, and only one, equilibrium sequencing of production.

Proof. Both the CN and DF equilibria are the intersection of the piece-wise linear best-

response curves. In q2-q1 space, the slope of firm 1’s best-response curve (12) is either

infinite (when B1(q2) = 0 or when B1(q2) = S1) or −1/2 (when 0 < B1(q2) < S1),

9In this case, equilibrium 12→ 12 exists only for sufficiently high c2. Evaluating the exhaustion condition

for firm 1 in equilibrium 12 → 12 at SCN1 yields a value greater than SCN2 only if c2 >
(4+3β)c1−(2+3β)p̄

2 >
c1+p̄

2 .
10In area 12 → 2, QCN − QDF = S1−(1−β)(p̄−c2)

2(1+β) < 0, which is less than zero since S1 < (1 − β)(p̄ − c2).

In area 12 → 12, QCN − QDF = (1−β)(2c2−p̄−c1)
3(1+β) < 0, which is less than zero since c2 < (p̄ + c1)/2 in cost

region (ii).
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while the slope of firm 2’s best-response curve (12) is either zero (when B2(q1) = 0 or

B2(q1) = S2) or −2 (when 0 < B2(q1) < S1) for the CN and is either zero or −1 (when

0 < B2(q1) < S1) for the DF.

This proposition is the result of both the CN and DF equilibria being defined as

the intersection of piece-wise linear best-response curves.

Second, the sequencing of production is related to the relative costs of extraction,

but is independent of the relative stocks held by the firms. To show this, we first define

diversified production as follows:

Definition 1. An extraction path is said to be diversified if both firms extract in the

first period and continue to extract until their initial resource endowment is exhausted.

Proposition 2. If the marginal production costs of the two firms are relatively equal

(i.e., 2c1− p̄ ≤ c2 ≤ (p̄+ c1)/2 in CN or c1 ≤ c2 ≤ (p̄+ c1)/2 in DF), then there exists

a diversified extraction path in either the CN or DF games, respectively, independent

of each firm’s resource endowment. If firm i has much lower costs than firm j, for

i 6= j, i, j = 1, 2, then firm i always produces in period 1, and firm j only produces in

period 1 when both firms have very little stock or when firm j has large stocks relative

to firm i.

Proof. Given in the text.

These propositions show that while the CN and DF equilibria differ in many ways,

they share a similar qualitative nature. In both cases, for each cost and stock combina-

tion, there exists a unique extraction path. Furthermore, diversified extraction always

occurs when marginal extraction costs are similar. When costs are very different, the

low cost producer always begins extraction in period 1 while the high cost producer only

begins production in period 1 if his stocks are sufficiently high to warrant production

in both periods, given the actions of the low cost producer.

Finally, note that in both the CN and DF games, each of the eight possible equi-

librium paths holds within a convex set of {S1, S2} values. Nevertheless, the set of

two-period equilibria taken as a whole is a convex set only in cost region (ii). In both

cost regions (iii) and (i), the two-period equilibrium set of stocks is not convex. This

occurs because the exhaustion condition for equilibrium 1 → 12 is flatter than the

exhaustion condition for equilibrium 12 → 12, as shown in Fig. 1a for the CN case,

while the exhaustion condition for equilibrium 2 → 12 is steeper than the exhaustion

condition for equilibrium 12→ 12 in Fig. 1c.
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4 Truly Stackelberg Equilibria

Now, we turn to the “truly Stackelberg” game, where firm 1 chooses its output first

within each period in a sequential game and where both firms have market power. The

TS game differs from the CN game where quantity choices are made simultaneously

within each period. The TS game also differs from the DF game, where both firms

move simultaneously and where the follower is a price taker. While in the DF game, it

is firm 2 whose behavior changes relative to the CN game, in the TS game, it is firm

1 whose behavior changes relative to the CN game.

Unlike the DF game, where firm 2’s behavior changes in every possible equilibrium,

firm 1’s behavior changes in the TS game only when it is able to influence firm 2’s

behavior. Thus, only the three equilibria where the follower produces in both periods,

equilibria 12 → 12, 12 → 2, and 2 → 12, do the TS necessary conditions change,

relative to the CN equilibrium, by allowing the leader to move first in a sequential

game. In these three equilibria, movements along firm 2’s best-response curve imply

that dq∗2/dq1 = −1/2. In all other TS equilibria, dq∗2/dq1 = 0, implying that in these

cases the TS necessary conditions are identical to the CN necessary conditions.11 At

these three TS equilibria, firm 1 is no longer constrained to being on its best-response

curve. In addition, there are two new TS equilibria, discussed below, which we denote

as 12→ 1∗TS and 1→ 12∗TS which, unlike their CN counterparts, also occur at a point

off firm 1’s best-response curve. The necessary conditions for the three TS equilibria

which differ from the CN equilibria are derived in Appendix B.

Fig. 3 shows how the TS and CN equilibria differ in the stocks space S1-S2. As

in the CN graphs, regions in which different equilibria occur are shaded differently.

CN regions are marked as in Fig. 1. Equilibria in which the TS equilibrium differs

from the CN equilibrium are indicated with the superscript “TS”. Period 2 exhaustion

condition boundaries for the CN equilibrium are shown as solid lines.12 As in Fig. 1,

stocks for which exhaustion occurs in three or more periods are unshaded.

In every cost region the minimum S1 value for which the 12 → 12TS equilibrium

11In a sequential-move DF framework, since the follower has no market power, the reaction of firm 2 to
an increase in production from firm 1 is that dq∗2/dq1 = −1. Thus, when firm 2 produces in both periods,
firm 1 effectively behaves as though it too is a price taker. As a result, no equilibrium exists in which both
firms extract over successive periods, except when their marginal extraction costs are equal.

12Period 2 TS exhaustion condition boundaries are not shown in Fig. 3. As in the DF equilibria, the
strategic behavior by firm 1 causes there to exist areas which are feasible in the two-period TS game, which
required three periods in the CN game.
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occurs in the TS equilibria relative to the CN equilibria satisfies STS1 > SCN1 .13 In

contrast, STS2 may be greater than or less than SCN2 . And cost region (ii) is split into

two parts in the TS game, labelled (ii)(a) and (ii)(b), respectively, with STS2 > SCN2

in cost region (ii)(a) and STS2 < SCN2 in cost region (ii)(b).14

We say that a “gap” occurs when STS2 > SCN2 , so that for SCN1 < S1 < STS1 ,

some stock values S2 in equilibrium 12 → 12CN are not in equilibrium 12 → 12TS .

This occurs in cost regions (i), (ii)(a), and (iii) as depicted in Figs. 3a, 3b, and 3d,

respectively. We say that an “overlap” occurs when two TS equilibria are feasible.

This occurs when STS2 < SCN2 in cost region (ii)(b) as shown in Fig. 3c so that for a

given S1 ≥ STS1 , all S2 values that were in equilibrium 12 → 12CN are in equilibrium

12→ 12TS . This also occurs in cost regions (ii)(a) and (ii)(b), where for SCN1 < S1 <

STS1 , both equilibria 12→ 2TS and equilibria 12→ 1CN are feasible.

4.1 Leader’s choice over equilibria

Key to the analysis of the TS game is determining how the leader selects amongst the

feasible equilibria when choices arise. Once we have established how the leader selects

amongst equilibria when that opportunity arises, we analyze the welfare effects of his

choice.

Equilibrium Selection when Firm 2 Produces Over Both Periods.

Our first result is that when feasible, in each TS equilibria in which firm 2 produces

over two periods, firm 1 can improve its profits. When the CN equilibrium 12→ 12CN

has qCN1 > βS1/(1 + β) in cost regions (i) and (ii), firm 1’s profits are increasing in

its own output. Therefore, if firm 1 has sufficient stocks, it can increase its profits by

moving to equilibrium 12 → 12TS , and if it is stock constrained, it can increase its

profits by moving to equilibrium 12→ 2TS . When the CN equilibrium 12→ 12CN has

qCN1 < βS1/(1+β) in cost region (iii), firm 1’s profits are decreasing in its own output.

Therefore, if firm 2 has sufficient stocks, firm 1 can increase its profits by moving to

equilibrium 12→ 12TS , and if firm 2 is stock constrained, firm 1 can increase its profits

13This occurs because equilibrium 12→ 12TS ’s boundary at its left side is either with equilibrium 12→ 2TS

[in cost regions (i) and (ii)] or with equilibrium 2 → 12TS [in cost region (iii)]. Since the effect of an
increase in q1 is a reduction in q2 at rate −1/2 in each of these equilibria, the lower bound for which S1

yields equilibrium 12→ 12TS shifts to the right relative to the CN.
14In cost regions (i) and (iii), STS2 > SCN2 , but in CN cost region (ii), STS2 < SCN2 if, and only if,

c2 < c̄2 ≡ (4β+6)c1+(4β+3)p̄)
8β+9 [found by equating (A.4b) and (B.2b)].
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by moving to equilibrium 12→ 1∗TS . To sum up, we have the following Proposition.

Proposition 3. In the TS game, if firm 2 produces over two periods, firm 1 can always

improve its profits through its strategic effect on firm 2’s production.

Proof. See Appendix C.

This result is shown in Fig. 4. In both panels, q12→12CN

1 > βS1/(1 + β), so that

firm 1’s profits increase as q1 increases along firm 1’s best-response curve. In cost

region (ii), where q12→12CN

2 > βS2/(1 + β), so that firm 2’s profit are increasing as q2

decreases, if the interior equilibrium 12 → 12TS is feasible, as occurs when S1 > STS1

and S2 > STS2 , firm 1 can increase its profits by increasing its first period output, as

shown in Fig. 4a. When SCN1 < S1 < STS1 , however, firm 1 does not have sufficient

stocks to obtain equilibrium 12 → 12TS , yet it can still obtain higher profits than

at equilibrium 12 → 12CN by exhausting its own stocks in period 1, in equilibrium

12 → 2TS . This is shown in Fig. 4b, which is drawn for cost region (i), where firm

2’s output satisfies q12→12CN

2 < βS2/(1 + β), so that firm 2’s profit are increasing as q2

decreases along its best-response curve.15

Equilibrium Selection in the “Overlap” Case, Cost Region (ii)(b).

Next, consider firm 1’s equilibrium selection problem when there is an ‘overlap,’ so

that STS2 < SCN2 . This occurs in cost region (ii)(b) depicted in Fig. 3c. When

STS2 < S2 < SCN2 , both equilibrium 12→ 12TS and 12→ 1CN are feasible. Therefore,

firm 1 chooses whichever equilibrium yields the highest profits for itself.

In equilibrium 12→ 12TS , firm 1’s profits are given by (1a) evaluated at (B.1) from

Appendix B, yielding

π12→12TS

1 =
(1− β)2(p̄− 2c1 + c2)2 − 8βS1[S1 + S2 − 2(p̄− c1)]

8(1 + β)
. (16)

Under equilibrium 12 → 1CN , firm 1’s profits are given by (1a) evaluated at q2 = S2

and q1 satisfying (11), yielding

π12→1CN

1 =
[S2 − (1− β)(p̄− c1)]2 − 4βS1[S1 + S2 − 2(p̄− c1)]

4(1 + β)
. (17)

15Similar graphs may be drawn for cost region (iii), where q12→12CN

1 < βS1/(1+β), so that firm 1’s profits
increase as q1 decreases along firm 1’s best-response curve. Firm 1’s choice in the each of these TS equilibria,
however, depends only on how its profits are affected by a increase in its own first period output and how
much stock it holds.
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Equating these and solving for S2 yields

S2 = S̄2 ≡ (1− β)(p̄− c1)± (1− β)(p̄− 2c1 + c2)√
2

. (18)

At S̄2, firm 1’s profits in equilibrium 12 → 12TS and equilibrium 12 → 1CN are

equal. The derivative of the difference in profits is d∆π1/dS2 = (1−β)(p̄−c1)−S2

2(1+β) , which

is positive at the smaller root and negative at the larger root. Therefore, above the

smaller root, S̄2 = (1 − β)(p̄ − c1) − (1−β)(p̄−2c1+c2)√
2

, equilibrium 12 → 12TS is chosen

by firm 1 and below S̄2, equilibrium 12→ 1CN is chosen by firm 1.

The equilibrium selection problem can be seen most clearly using best-response

graphs, as shown in Fig. 5. In Fig. 5a, S2 > S̄2, so firm 1’s profits are greater at

equilibrium 12 → 12 than at equilibrium 12 → 1, even though both are feasible. In

Fig. 5b, S2 < S̄2, so firm 1’s profits are greater at equilibrium 12→ 1, where firm 2 is

forced to exhaust in the first period, than at equilibrium 12 → 12, even though both

are feasible. When S2 = S̄2, firm 1 is indifferent between the two equilibria.

Firm 1 also faces an equilibrium selection problem in cost regions (ii)(a) and (ii)(b)

depicted in Figs. 3b and 3c for values SCN1 < S1 < STS1 . In these areas, equilibria

12→ 2TS and 12→ 1CN are each feasible.

Evaluating π1 at equilibrium 12→ 2TS using (B.3) from Appendix B yields

π12→2TS

1 =
S1[2(1 + β)(p̄− c1)− (1− β)(p̄− c2)− (1 + 2β)S1 − 2βS2]

2(1 + β)
. (19)

Equating π12→2TS

1 and π12→1CN

1 and solving for S2 yields

S2 = ¯̄S2(S1) ≡ (1− β)(p̄− c1)±
√

2S1(1− β)(p̄− 2c1 + c2)− 2S2
1 . (20)

The boundary ¯̄S2(S1), unlike S̄2, depends upon S1. Again, the smaller root, ¯̄S2(S1) ≡
(1− β)(p̄− c1)−

√
2S1(1− β)(p̄− 2c1 + c2)− 2S2

1 , forms the boundary between equi-

libria 12→ 2TS and 12→ 1CN , with 12→ 2TS chosen by firm 1 above this boundary

and 12→ 1CN chosen by firm 1 below this boundary.16

Fig. 6 shows the equilibrium selection problem faced by firm 1 in cost regions

(ii)(a) and (ii)(b) when SCN1 < S1 < STS1 , where the choice is between equilibria

12 → 2TS and 12 → 1CN . In Fig. 6a, S2 >
¯̄S2(S1), so firm 1’s profits are greater at

16d∆(π12→2
1 −π12→1

1 )/dS2 = (1−β)(p̄−c1)−S2

2(1+β) . This is positive at the smaller root and negative at the larger

root. Furthermore, as shown in Fig. 3c, ¯̄S2(STS1 ) = S̄2.
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equilibrium 12 → 1 than at equilibrium 12 → 1CN , even though both are feasible. In

Fig. 6b, S2 <
¯̄S2(S1), so firm 1’s profits are greater at equilibrium 12→ 1CN , than at

equilibrium 12→ 2TS , even though, again, both are feasible.

These equilibria are summarized as follows:

Proposition 4. In the overlap areas in cost region (ii), where two TS equilibria are

feasible, firm 1 selects the equilibrium which maximizes its profits. This results in

equilibrium 12→ 1CN when firm 2’s stocks are small, and either 12→ 2TS when S1 is

small and 12→ 12TS when S1 is large.

Proof. Derived in the Text.

In the overlap areas in cost region (ii)(b), where S1 > STS1 and SCN2 < S2 < STS2 ,

firm 1’s equilibrium selection is determined by the stocks held by firm 2. If firm 2’s

stocks are large (S2 > S̄2), then firm 1 can induce firm 2 to produce in period 2 with

a small increase in its own period 1 output. But when firm 2’s stocks are smaller than

S̄2, the required increase in firm 1’s period 1 production to induce firm 2 to produce in

period 2 is too large to be profitable. In the overlap area between SCN1 < S1 < STS1 in

cost regions (ii)(a) and (ii)(b), both stocks constrain firm 1’s choice. Only when both

stocks are large [i.e., S2 >
¯̄S2(S1)], can firm 1 profitably induce firm 2 to produce over

both periods by producing its own entire stock in period 1.

Equilibrium Selection in the “Gap” Cases, Cost Regions (i), (ii)(a),

and (iii).

In the overlap cases, firm 1 selected between two feasible TS equilibria for each stock

value within the overlap area. In the ‘gap’ cases, in contrast, stock values within the

gap satisfy the necessary conditions for none of the TS equilibria so far considered.

But there does exist a feasible CN equilibrium for each given stock values. Thus, firm

1’s equilibrium selection problem in these cases involves finding whether or not there

exists a TS equilibrium which is both feasible and profit dominates the CN equilibrium.

In cost region (iii), where firm 2 has a significant cost advantage over firm 1, a gap

occurs in Fig. 3d for values of S1 > SCN1 and for SCN2 < S2 < STS2 .17 In this gap area,

equilibrium 12→ 12CN , which is feasible, is dominated by equilibrium 12→ 1∗TS . At

equilibrium 12 → 1∗TS , as in equilibrium 12 → 1CN , firm 1 chooses q1 to induce firm

17For S2 > STS2 and S1 < STS1 , equilibrium 2 → 12TS dominates equilibrium 12 → 12CN by Proposition
3. For S2 < SCN2 , equilibrium 12→ 1CN is the best firm 1 can do.
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2 to exhaust in period 1. What differs, however, is that in equilibrium 12 → 1CN ,

firm 1 chose q1 such that firm 1’s iso-profit curve is tangent to firm 2’s best-response

curve along the q2 = S2 portion of that curve, which because q2 = S2 occurs where

firm 1’s best-response curve intercepts firm 2’s best-response curve (see Fig. 6b). In

contrast, in equilibrium 12→ 1∗TS , firm 1 chooses q12→1∗TS

1 such that B2(q1) = S2 for

all q1 ≤ q12→1∗TS

1 . Thus, as shown in Fig. 7, firm 1’s iso-profit curve is not tangent to

firm 2’s best-response curve, since q12→1∗TS

1 occurs at the kink in firm 2’s best-response

curve where B2(q12→1∗TS

1 ) = S2.

The boundary between the 12 → 1∗TS equilibrium and the 2 → 12TS equilibrium,

which lies above it in cost region (iii), occurs when firm 1 just has sufficient stocks to

force firm 2 to produce its entire stock in period 1. Thus, equilibrium 2 → 1 occurs

along this boundary, which is given by S2 = 1
2 [(1− β)(p̄− c2) + βS1]. This can be

seen to be an extension of the boundary between 2→ 1 and 2→ 12 in Fig. 3d.

A second gap area occurs in cost region (i), where firm 1 has a significant cost

advantage, as is shown in Fig. 3a. In the gap region where SCN2 < S2 < STS2 and

S1 > SCN1 , equilibrium 12 → 12CN is feasible, but neither an interior equilibrium

12 → 12TS nor equilibrium 1 → 12CN is feasible. Equilibrium 12 → 2TS is feasible

when S1 < STS1 . But there is one other possibility: equilibrium 1 → 12∗TS . This

equilibrium occurs in the portion of firm 1’s best-response curves where firm 1’s profits

increase as q1 increases along firm 1’s best-response curve. In 1→ 12∗TS firm 1 induces

firm 2 to produce only in period 2. It does so by choosing q1→12TS

1 where firm 2’s best-

response curve is kinked at B2(q1) = 0. This is shown in Fig. 8.

The other possibility within the gap area in cost region (i) is the equilibrium 12→
2TS . The boundary between equilibria 12 → 2TS and 1 → 12∗TS in the gap area

in cost region (i) in Fig. 3a occurs when firm 1 just has sufficient stock to force

firm 2 to produce zero in period 1 while firm 1 produces its entire stock in period 1.

This occurs as an extension of the upper bound to equilibrium 1 → 2, along the line

S2 = −(1− β)(p̄− c2)/2 + βS1/2.

A third gap area occurs in cost region (ii)(a) as shown in Fig. 3b for stock values

such that S1 > STS1 and for which SCN2 < S2 < STS2 . In this case, equilibrium 12 →
12CN is feasible. The only other candidate for the TS equilibrium is the equilibrium

12→ 1∗TS . However, unlike cost region (iii), the higher relative costs to firm 2 in cost

region (ii)(a) make equilibrium 12→ 1∗TS infeasible.

We summarize these outcomes in the following:

Proposition 5. In the gap area in cost region (i) where equilibrium 12 → 12CN is
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feasible, since firm 1’s profits are increasing in q1, firm 1 increases its first period

output to the point where firm 2 ceases production in period 1, if possible, and if not,

firm 1 produces its entire stock in period 1. In the gap area in cost region (iii), where

equilibrium 12 → 12CN is feasible, since firm 1’s profits are decreasing in q1, firm 1

decreases its first period output to the point where firm 2 extracts its entire stock in

period 1, if possible, and if not, firm 1 produces its entire stock in period 2. In the gap

area in cost region (ii)(a), where equilibrium 12→ 12CN is feasible, that equilibrium is

the best firm 1 can do.

Proof. See Appendix C

Thus, in the TS game, the Stackelberg leader, firm 1, has the opportunity to influ-

ence what equilibrium occurs. Sometimes firm 1 prefers the equilibrium it could attain

under the CN, as in Figs. 5b and 6b, but we have identified instances where firm 1 can

improve its profits relative to the CN in the TS equilibrium by selecting an equilibrium

in which at least one of the firms is forced to exhaust its stock in period 1.

Like the CN and DF games, the TS game has a unique equilibrium path for every

cost and stock combination. The TS equilibrium also exhibits diversified production

whenever costs are in cost region (ii), independent of the relative stocks, and when in

cost region (i), where firm 1 has the cost advantage, firm 1 always produces in period

1, and when in cost region (iii), where firm 2 has the cost advantage, firm 2 always

produces in period 1. Thus Propositions 1 and 2 can be extended to the TS game as

well.

Finally, note that unlike the CN case, not all of the equilibrium areas in which a

particular sequencing of production occurs are convex sets. In particular, equilibrium

12→ 1 is non-convex in both cost regions (ii)(a) and (ii)(b).

4.2 TS vs CN

Table 3 summarizes the effects of changes in the extraction pattern in the TS equilib-

rium relative to the CN equilibrium. Since firm 1 is unambiguously made better off by

the TS equilibrium, our focus is upon the effect of the leader’s choices on the rate of

extraction, consumer surplus, and firm 2’s profits.

We analyze two cases in detail to illustrate the intuition. Consider the last case

described in Table 3. In TS equilibrium 12 → 1∗TS , firm 1 prefers to produce less

in the first period relative to the CN equilibrium 12 → 12CN , implying that firm 2

will produce more in period 1 and total production of the two firms declines since

19



Table 3: Equilibrium Effects of TS Equilibrium Selection Relative to the CN Equilibrium

Equilibrium Change under TS Relative to CN
Cost Region CN TS Extraction Rate Consumer’s Surplus Firm 2 Profits
Region (i) 12→ 12 1→ 12∗ Faster Increased Increased

12→ 12 12→ 2 Faster Increased Increased
Region (ii)(a) 12→ 12 12→ 2 Faster Increased Uncertain

12→ 1 12→ 2 Faster Increased Decreased
Region (ii)(b) 12→ 12 12→ 2 Faster Increased Decreased

12→ 1 12→ 2 Faster Increased Decreased
12→ 1 12→ 12 Faster Increased Decreased

Region (iii) 12→ 12 2→ 12 Slower Decreased Increased
12→ 12 12→ 1∗ Slower Decreased Increased

dq∗2/dq1 = −1/2. Firm 2, however, obtains a larger profit as illustrated by its iso-profit

curve in Fig. 7. Consumers are worse off as resources become more expensive in the

first period.

In equilibrium 1 → 12∗TS , relative to the CN equilibrium 12 → 12CN , firm 1

produces more in the first period, firm 2 produces less in period 1, and total production

rises in period 1. Again, firm 2 obtains a larger profit even though its first period

production declines. This is due to the fact that profits to firm 2 are increasing by

moving down along firm 2’s best response curve, as illustrated in Fig. 8. In this case,

consumers are better off as resources become cheaper in the first period. Therefore,

social welfare is improved by allowing firm 1 to move first.

To summarize, we have the following proposition.

Proposition 6. (a) If firm 1’s profit decreases with its first period production, then

in the TS equilibrium where firm moves first, it will extract at a slower rate compared

to the case where firms move simultaneously, and vice versa. (b) If the leader extracts

slower, then the follower extracts faster and total society extracts slower; and vice versa.

(c) If the leader’s profit decreases with its first period production or if the follower’s

profit decreases with its first period production, then the follower obtains a higher profit

as a second mover compared to the case where firms move simultaneously.

Proof. See Appendix C.

With firms move simultaneously in each period, firm 1’s first period production

decreases with firm 2’s resource stock but increases with firm 2’s production cost. Thus,

based on Proposition 5, the leader’s profit decreases with its first period production if
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firm 2’s resource stock is relatively large or if firm 2’s production costs are relatively

small. Therefore, the leader is more likely to postpone its production if the follower’s

resource stock is relatively large or if the follower has the cost advantage.

4.3 A Special Case

A special case arises if the two firms have identical costs as well as identical stocks.18

In this case, if the two firms move simultaneously, then both firms produce either only

in period one or over both periods, depending on the size of their stock endowments,

since the 12 region kink occurs at SCN1 = SCN2 when c1 = c2. If firm 1 moves first,

however, then equilibrium 12→ 2TS exists for (1−β)(p̄− c)/3 < S < (1−β)(p̄− c)/2.

Even in this special case, there exists an advantage to moving first.

5 Discussion and Conclusions

This paper examines a two-period, discrete-time “Truly Stackelberg” model where

firms move sequentially within each period and where both the leader and the follower

behave strategically. This contrasts to the literature on Stackelberg games in non-

renewable resources, that has primarily used continuous-time models which implicitly

assume that firms move simultaneously within period. The TS game equilibria are

contrasted with the simultaneous move Cournot Nash equilibria.

In the TS game, the leader is able to manipulate extraction patterns by exploiting

resource endowment constraints in a fashion novel to the literature. Specifically, there

are instances in the TS game where even though an equilibrium in which both firms

produce over both periods is feasible (and would occur if the game were simultaneous-

move), the leader prefers, and has the power to select an equilibrium in which either the

follower or the leader exhausts his entire stock in only one period. We also show that

with a resource stock constraint, the issues revolve around the timing of production,

rather than the existence of production as in static Stackelberg games.

Whether the leader wants to speed up its production depends on the shape of its

iso-profit curve, which is affected by the two firms’ relative stock endowments and

relative production costs. When leader’s profits are increasing in its own first period

18The case where the two firms have identical marginal extraction costs, c1 = c2, is analyzed in cost region
(ii)(b), as depicted in Fig. 3c. The case where the two firms have identical stocks is given by equilibria along
the 45◦ line in S1-S2 space for each cost region. However, as this 45◦ line could pass through almost every
equilibria, depending on the relative costs, little is gained by this restriction.
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output as it moves down its own best-response curve, the leader wishes to increase

output relative to the CN equilibrium. The other case, which only appears in cost

regions where either firm 1 or firm 2 has a significant cost advantage, the profit for the

high-cost firm is decreasing in its own first period output. The leader is more likely to

postpone its production if the follower’s resource stock is large relative to its own or if

the follower has the cost advantage. When the leader extracts faster, then the follower

extracts slower and in aggregate society extracts faster.

Finally, unlike static Stackelberg games, the follower does not necessarily have a

second mover disadvantage. This is because in non-renewable resource Stackelberg

games, both firms must eventually produce all of their stock.
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Figure 1: Simultaneous-Move, Cournot-Nash Equilibrium Stock Areas by Cost Region
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Figure 3: Sequential-Move, Truly Stackelberg Equilibrium Stock Areas by Cost Region
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Figure 4: Truly Stackelberg Equilibrium Selection with Firm 2 Extracts over Two Periods
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Figure 5: Truly Stackelberg Equilibrium Selection: 12→ 12TS vs. 12→ 1CN in the ‘Overlap’
Area of Cost Region (ii)(b) for S1 > STS1
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Figure 6: Truly Stackelberg Equilibrium Selection: 12→ 1CN vs. 12→ 2TS in the ‘Overlap’
Areas of Cost Regions (ii)(a) and (ii)(b) for SCN1 < S1 < STS1
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Figure 7: Truly Stackelberg Equilibrium Selection: 12 → 12CN vs. 12 → 1∗TS in the ‘Gap’
Area of Cost Region (iii)
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