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Abstract:

This paper investigates the empirical properties of oil, natural gas, and electricity price
volatilities using a range of univariate and multivariate GARCH models and daily data from
wholesale markets in the United States for the period from 2001 to 2013. The key contribu-
tion to the literature is the estimation of trivariate BEKK and DCC models that allow us
to observe spillovers and interactions among energy markets. We evaluate and compare the
performance of univariate and multivariate models with a range of diagnostic and forecast
performance tests, and assess forecasting performance and conditional correlation dynamics.
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1 Introduction

Energy markets are taking an increasingly pre-eminent place in the global economy. Energy
is not only one of the most important consumer commodities, but also a major input for
almost every industry. The U.S. Energy Information Administration’s long-term projections
suggest that total energy consumption and energy commodity prices will grow steadily over
the next several decades. The price of natural gas, which reached its minimum in 2012, is
expected to increase by 60%, the price of electricity by 7%, and the price of crude oil by
62%, reaching $145 per barrel by 2035 – see Energy Information Administration (2012).
Oil, natural gas, and increasingly, electricity, are traded in competitive wholesale markets,

which experience dynamics similar to those of financial markets. Prices fluctuate significantly
by day and even hour, and periods of relative tranquility are interspersed with those of ex-
treme volatility, which can last for days or weeks and are triggered by supply and demand
shocks, or events in other energy markets, derivative markets, and the macroeconomy. Fac-
tors like political instability in the oil-producing Middle East region and the expansion of
wind electricity generation are likely to keep energy markets volatile into the foreseeable
future.
Energy commodity price volatility is of great concern to oil, natural gas and electricity

market participants, as well as policymakers. Being able to accurately forecast this volatility
carries direct implications for hedging and derivatives trading. Moreover, failing to account
for changing volatility (heteroskedasticity in the data) results in biased standard error esti-
mates, invalidating inference and tests of statistical significance.
Since the development of the ARCH and GARCH models by Engle (1982) and Bollerslev

(1986), respectively, a significant body of literature has focused on using these to model
the volatility of energy commodity prices. The 1990’s and early 2000’s saw several empiri-
cal studies using univariate GARCH models with energy data – the most notable include
Morana (2001) and Lin and Tamvakis (2001). More recently, the standard of practice has
shifted towards multivariate GARCH, a class of vector autoregressive models that was first
proposed by Bollerslev et. al. (1988) and became much more widely used after the popular-
ization of its simplified BEKK variant, proposed by Engle and Kroner (1995). Despite the
explosion of new types of multivariate GARCH models in recent years, including fractionally
integrated GARCH [see Baillie et. al. (1996)], nonparametric GARCH [see Bühlmann and
McNeil (2002)], and multiplicative component GARCH [see Engle and Sokalska (2012)], sim-
ple models of the GARCH(1,1) type remain very useful because they converge much faster to
a local maximum in quasi-maximum likelihood estimation, while delivering very competitive
forecasting performance [see Andersen and Bollerslev (1998) and Wang and Wu (2012)].
This paper contributes to the literature on energy price volatility modelling in several

ways. First, it fills the gap in univariate GARCH modelling of energy commodity volatility
– there have been very few such studies published since 2005. We estimate univariate
GARCH models for wholesale oil, natural gas, and electricity prices, using daily U.S. data
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that is as recent as April 2013, and present two alternative specifications for each commodity
(Section 3). Secondly, we estimate trivariate BEKK and DCC models that explore the
interdependence of wholesale oil, natural gas, and electricity market prices and volatilities
using recent U.S. data (Section 4). Existing studies have explored the relationships among
several electricity markets [see Goto and Karolyi (2004) and Worthington et al. (2005)],
between oil and natural gas markets [see Ewing et al. (2002) and Serletis and Shahmoradi
(2006)], and between oil markets and financial or macroeconomic indicators [see Lee et al.
(1995), Sadorsky (2012), Elder and Serletis (2010), and Rahman and Serletis (2012)], and
among separate crude oil markets [Jin et al. (2012)]. However, no study has used multivariate
GARCH to model oil, natural gas, and electricity markets as a system, to the best of our
knowledge. As an additional contribution to the literature, the use of both univariate and
multivariate models over the same data set allows us to compare the performance of these
models, including forecasting performance.

2 The Data

We use daily crude oil, natural gas, and electricity wholesale price data for the period from
January 2, 2001 to April 26, 2013, obtained from the U.S. Energy Information Adminis-
tration (EIA). Specifically, we use the West Texas Intermediate crude oil price at Cushing,
Oklahoma; the wholesale natural gas price at Henry Hub; and an electricity price that is a
weighted average of prices at six of the largest wholesale markets (Nepool Mass Hub in New
England, PJM West in Pennsylvania, Entergy in Louisiana, Mid Columbia hub, SP15 EZ
and SP15 hubs in California, and the ERCOT South hub in Texas). Due to the extremely
high degree of correlation among prices at these hubs, averaging hardly attenuates the de-
gree of price volatility in electricity markets. Table 1 presents summary statistics for the
log-levels, ln ot, ln gt, ln et, and logarithmic first-differences, ∆ ln ot, ∆ ln gt, and ∆ ln et of
the three price series. Note that all first-differenced series are scaled up by a factor of 100.
Figure 1 shows the log levels of the series and their growth rates.
For several models, we use additional data, including the nationwide natural gas storage

inventory vt from the EIA, the S&P 500 index data from Yahoo! Finance, and temperature
data for California and Texas from the National Climatic Data Center (2012). We originally
worked with temperature data for other states (such as, for example, New York), and with
regional averages, but found that the former did not have much predictive power in models
estimated, and the latter attenuated local extreme temperature events.
Natural gas storage data was converted from weekly into daily frequency in the following

way. Assuming a constant rate of inventory change during each week, we calculate the
average daily rate of change as (vw−vw−1)/5, where vw represents the observed storage level
on Wednesday of week w, then use this value to fill in the four missing observations in each
week. Further, we take a logarithm of each daily inventory level to obtain the ln vt series.
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Temperature data is transformed into Degree Days (DD), a common measure used in the
empirical finance literature – see Mu (2007). Total degree days (DD) is a sum of heating
degree days (HDD) and cooling degree days (CDD), as follows

DDt = CDDt +HDDt

CDDt = max(0, T − 65oF )

HDDt = max(0, 65oF − T ).

Panels A and B of Table 2 report the results of unit root and stationarity tests in log
levels, ln ot, ln gt, and ln et, and logarithmic first differences, ∆ ln ot, ∆ ln gt, and ∆ ln et.
The Augmented Dickey-Fuller (ADF) test [see Dickey and Fuller (1981)] and the Phillips-
Perron (PP) test [see Phillips and Perron (1988)] evaluate the null hypothesis of a unit root
against an alternative of stationarity, while the Kwiatkowski et al. (1992) tests assume a null
hypothesis of stationarity (around a constant for test statistic η̂µ and around a trend for η̂τ )
and an alternative of a unit root. Due to the presence of unit roots in the log levels, in what
follows we estimate all autoregressive GARCH models using logarithmic first differences. We
choose a GARCH (1,1) formulation for all univariate models, because it has been found to
yield the best performance compared to other GARCH lag configurations, under the most
general conditions [see Hansen and Lunde (2005)].

3 Univariate GARCH Modelling

This section presents a range of univariate GARCH models for crude oil, natural gas, and
electricity prices. As mentioned earlier, univariate GARCH models have been neglected
by academic research in recent years despite their strong performance. Moreover, as we
will argue in Section 5, univariate models produce accurate forecasts, converge much faster
in maximum likelihood estimation, and allow for the inclusion of a significant number of
additional parameters whereas multivariate systems quickly become overparameterized.

3.1 Crude Oil

Oil price volatility is of great interest to energy and financial market participants, as well
as policymakers. In fact, the oil price and its volatility are widely used as leading macro-
economic indicators. At the same time, both are notoriously hard to forecast due to the
complexity of the factors affecting outcomes in the oil markets.
In this section, we estimate two GARCH (1,1) models that differ in their mean equations

to model the daily change in the oil price. The Schwarz Information Criterion (SIC) sug-
gests the random walk (ARMA(0,0)) as the optimal specification; therefore, the first mean
equation only contains an intercept. The second is augmented with additional regressors -
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a GARCH-in-mean parameter, the daily return rate on the S&P 500 index ∆lnxt (scaled
up by a factor of 100), and a set of three seasonal dummy variables st. We found that the
latter has more predictive power than monthly dummies or weather-related variables. The
two mean equations are represented as

∆lnot = α + εt (1)

∆lnot = α + β3ht + β4∆lnxt +
4∑
j=1

β4+jst + εt. (2)

When estimated as Box-Jenkins equations using maximum likelihood methods, both (1)
and (2) show strong evidence of heteroskedasticity (this result persists with the exclusion of
all observations since the beginning of the Great Recession in 2008). Univariate GARCH
corrects for the non-normal error distributions by dynamically adjusting the conditional
variances to take account of variations in the magnitude of the error term, allowing us
to obtain unbiased standard error estimates and forecast confidence bounds. We use a
GARCH(1,1) specification with an assumed GED error distribution; the latter allows for
“fat tails,”and provides a better fit to the oil price data than the normal distribution. In
addition, we include the GJR asymmetry coeffi cient of Glosten et al. (1993), ε2t−1×Iε<0(εt−1),
which captures the disproportionate response of a commodity’s variance to unexpected price
decreases. The resulting variance equation is

ht = c0 + a1ε
2
t−1 + b1ht−1 + d1ε

2
t−1Iε<0(εt−1). (3)

The empirical estimates for both models, equations (1) and (3), and equations (2) and
(3), are presented in panels A and B of Table 3. The positive intercept in both models
indicates an upward trend in crude oil prices. The most striking feature in the extended
model is the powerful effect of the contemporaneous return on the S&P 500 index on the
proportional change in the oil price – a 10% increase in the S&P index is associated with
a 1.2% increase in the oil price. On the other hand, seasonal and GARCH-in-Mean effects
are not significant.
The variance equation estimates underscore the high persistence of oil price volatility

with a very high “GARCH”coeffi cient on ht−1 (0.92 in both models), and very low “ARCH”
coeffi cients on ε2t−1 (0.02 in both models). This is a common finding in the literature on oil
price volatility. There is also a significant asymmetric effect: negative residuals (representing
unexpected declines in the oil price) are associated with 7% lower variance than positive
residuals of equal magnitude. Finally, the shape parameter estimate of 1.4 confirms the
fat-tailed shape of the residual distribution.
Panel C of Table 3 reports the log-likelihood values and diagnostic test statistics for the

standardized residuals
ε̂t =

εt√
ht
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including descriptive statistics, the Jarque-Bera statistic, the Ljung-Box Q test for residual
autocorrelation, and the McLeod-Li Q2 test for squared residual autocorrelation. Both tests
assume the null hypothesis that the data are independently distributed, and an alternative
hypothesis of autocorrelation. Q and Q2 statistics are reported for 30 lags, with p-values
in parentheses. Ljung-Box and McLeod-Li tests pass at conventional significance levels, so
there is no significant evidence of autocorrelation in the levels or squares of the standardized
residuals. We also created histogram and Gaussian kernel estimator plots (not reported
here), which showed approximately normal distributions for ε̂t.

3.2 Univariate Models of Natural Gas Prices

Volatility modelling of natural gas prices receives almost as much attention as that of oil
prices, primarily because being able to construct accurate forecasts has tremendous implica-
tions for hedging and derivatives trading in financial markets. At the same time, the natural
gas market is influenced in a much larger extent by fundamental factors, such as predictable
fluctuations in demand driven by weather variables, storage and transportation conditions,
and seasonal production and consumption patterns, which make it much easier to construct
models with significant predictive power. A third of natural gas in the United States is deliv-
ered to residential and commercial consumers (32.4%); 31.2% is used to generate electricity;
and 27.8% is used in industrial sectors – see Energy Information Administration (2012).
Like in the previous section, we estimate two univariate GARCH(1,1) models of natural

gas prices and volatility, which differ only in the mean equations. Model (1) uses a baseline
random walk mean equation (chosen by the SIC criterion) with no additional variables.
Model (2) employs a mean equation augmented with: weekday and seasonal dummy variables
wt and st, respectively; nationwide storage inventory ln vt; its interactions with seasonal
dummies ln vt× st; and temperature in degree days for California and Texas dct and dxt (see
Section 2 for a discussion on these). The inclusion of interaction terms is motivated by a
very clear seasonal pattern in natural gas storage inventories, which are built up during the
summer season of off-shore drilling, and depleted during the winter. The two mean equations
are presented below

∆lngt = α + εt (4)

∆lngt = α + β1ln vt + β2dct + β3dxt+
4∑
i=1

β3+iwt +
3∑
j=1

β7+jst +
3∑

k=1

β10+kst × ln vt + εt. (5)

The ∆lngt series displays strong evidence of heteroskedasticity, motivating the use of
a GARCH(1,1) variance equation. In fitting a GARCH model, we found that the normal
error distribution assumption yields the best fit to natural gas price data. Also, in contrast
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to univariate oil price GARCH models, we do not include any asymmetry coeffi cient after
finding small and insignificant estimates. The result in the “classic”GARCH(1,1) variance
specification

ht = c0 + a1ε
2
t−1 + b1ht−1. (6)

Empirical estimates for equations (4) and (6), and (5) and (6), are presented in Table 4,
in the same fashion as those for crude oil in Table 3. The extended mean equation reveals
distinct weekly and seasonal fluctuations in the natural gas price (pairs of seasonal variables
and corresponding season-storage interaction terms are jointly significant). Specifically, the
price tends to increase from Monday until Thursday, and then decrease on Friday. This
effect might be caused by higher industrial demand for natural gas and electricity during
weekdays. The price is higher in the winter and summer than in the transition seasons. The
effect of the nation-wide storage inventory on the price is large and significant in the spring,
when inventories are at the lowest level (a 10% increase in the inventory level is associated
with a 5.3% increase in price). In other seasons, the inventory effect is insignificant, likely
indicating an abundant and readily available short-term supply. DDmeasures of temperature
in California and Texas have small but significant effects on the natural gas price, with
opposite signs. This possibly reflects significant differences in electricity fuel mix of the
two states, and seasonal interactions between hot-weather months and renewable electricity
supply in California. California’s electricity generation fuel mix currently includes 20% hydro
and 20% other renewable sources, both of which are more productive in the spring/summer
season (U.S. Department of Energy, 2012).
Estimates of the variance equation coeffi cients are reported in panel B of Table 4. These

indicate that volatility in the natural gas market is less persistent than that in the crude oil
market, with ε2t−1 and ht−1 coeffi cients of 0.2 and 0.8, respectively. Volatility is estimated to
be slightly less persistent in the model which includes the extended mean equation, indicating
that the extended model, (5) and (6), is successful in capturing a larger set of relevant
information from the error term than the baseline model, (4) and (6).
Finally, panel C of Table 4 presents the log-likelihood values for models (1) and (2), as

well a range of statistics and diagnostic tests applied to the standardized residuals ε̂t. The
Ljung-Box test for residual autocorrelation does not pass at conventional significance levels;
however, after creating a plot of autocorrelations at each lag length, we found that only
a few of the autocorrelations exceeded 5%, indicating likely spurious effects. Overall, the
diagnostic tests indicate that both GARCH models are correctly specified.

3.3 Univariate Models of Electricity Prices

Wholesale electricity is much more vulnerable to extreme price events than other energy
commodities, because of its nonstorability, high transportation costs caused by physical
losses and transmission constraints, and highly inelastic demand. In addition, electricity
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supply is also inelastic at high output levels. Every region’s generation capacity is composed
of a unique mix of technologies, which differ by marginal cost and by their ability to quickly
change the level of output, and are alternately used for baseload, mid-peak and on-peak
electricity supply. At times of abnormally high demand or restricted supply, a region’s
generators may be pushed to full capacity, bringing high-cost “peaker”natural gas turbines
online, and resulting in periods of extreme price volatility marked by dramatic and frequent
price spikes. Electricity price volatility is, therefore, possibly the best candidate for GARCH
modelling.
Following the pattern established in the previous two subsections, we construct two

GARCH models, starting with a baseline ARMA(2,1)-GARCH(1,1) framework for the first
model

∆lnet = α + β1∆lnet−1 + β2∆lnet−2 + β3εt−1 + εt. (7)

We then augment equation (7) with additional variables to construct the second model.
We include weekday and seasonal dummy variables, and temperature in degree days for
California and Texas, dct and dxt, as additional variables. The number of AR and MA lags
was selected using SIC. The mean equation of the expanded model is

∆lnet = α + β1∆lnet−1 + β2∆lnet−2 + β3εt−1 + β4dct + β5dxt+
4∑
i=1

β5+iwt +
3∑
j=1

β9+jst + εt. (8)

The variance equation for each model is a “classic”GARCH(1,1) equation identical to
the one used for the natural gas models

ht = c0 + a1ε
2
t−1 + b1ht−1. (9)

Empirical estimates for GARCH models formed by equations (7) and (9), and (8) and
(9) are reported in Table 5. AR and MA coeffi cients indicate that changes in the electricity
price reverse direction with a high frequency. Although seasonal effects are insignificant,
the temperature effects for California and Texas mirror those estimated in the natural gas
models. A 1oF increase in temperature above, or a decrease below, the optimal temperature
of 65oF , is associated with a 2.2% electricity price increase in Texas, and a 2.5% decrease
in California (both effects are highly significant). Variance equation estimates indicate that
electricity price volatility is somewhat more “spiky” than that of natural gas prices, with
ε2t−1 and ht−1 estimates of 0.23 and 0.77, respectively.
Panel C of Table 5 reports the log-likelihood values and a range of diagnostic statistics

and tests applied to the standardized residuals ε̂t. The descriptive statistics for ε̂t reveal a
distribution that is very close to normal. The only issue is kurtosis, which is reduced with
the inclusion of additional variables in model (8) and (9). The Ljung-Box and McLeod-Li
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tests do not pass at conventional significance levels; however, after creating correlation plots
for 30- and 100-lag horizons, we found no significant correlations at any lag. We conclude
that both models, (7) and (9), and (8) and (9), adequately control for heteroskedasticity in
the data, with model (8) and (9) delivering slightly better performance.

4 Multivariate GARCH Modelling

First proposed by Bollerslev et al. (1988), multivariate GARCH (MGARCH) models are
becoming standard in finance and energy economics. Combined with a vector autoregressive
(VAR) or vector error-correction (VEC) model for the mean equation, they allow for rich
dynamics in the variance-covariance structure of series, making it possible to model spillovers
in both the values and the conditional variances of series under study.
In this section we estimate two trivariate models: a BEKK model of Engle and Kroner

(1995) and a Dynamic Conditional Correlation (DCC) model of Engle (2002). BEKK is a
more general specification, while the DCC is less computationally demanding and enables
time-varying correlations among series with only two additional parameters. MGARCH is a
valuable approach in our case because volatility spillovers are expected among oil, natural
gas and electricity markets: not only are the three substitutes in consumption, but also,
natural gas and oil are both used as inputs in electricity generation (mid-peak and on-peak,
respectively); and natural gas and oil are complements in production. The chosen specifi-
cations allow us to model the transmission of price volatility from one energy commodity
to another, and estimate the effects of volatility in any of the three markets on the price of
each commodity.

4.1 Model Specification

The BEKK and DCC models estimated in this section share the same trivariate vector
autoregressive moving average VARMA (1,1) specification, with logarithms of oil, gas and
electricity prices forming the dependent variables. We include the daily return in the S&P
500 index ∆ln xt (scaled up by a factor of 100), and a GARCH-in-mean term

√
ht:

zt = φ+ Γzt−1 + Ψ
√
ht + Θεt−1 + γ∆lnxt + εt (10)

εt | Ωt−1 ∼ (0, H t)
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where Ωt−1 is the information set available in period t− 1, and

zt =

 lnot
lngt
lnet

 ; Γ =

 γi11 γi12 γi13
γi21 γi22 γi23
γi31 γi32 γi33

 ;

√
ht =

 √h11,t 0 0

0
√
h22,t 0

0 0
√
h33,t

 ; Ψ =

 ψ11 ψ12 ψ13
ψ21 ψ22 ψ23
ψ31 ψ32 ψ33

 ;

Θ =

 θi11 θi12 θi13
θi21 θi22 θi23
θi31 θi32 θi33

 ; γ =

 γ1
γ2
γ3

 .
Normally, the presence of unit roots would suggest logarithmic first differences as the

correct data representation in our model. However, we find evidence of cointegration among
the three energy commodity prices, as can be seen in panels B and C of Table 2 where we
present Engle and Granger (1987) and Johansen (1988) cointegration tests. A system of I(1)
variables is cointegrated if there exists a linear combination of them that is stationary or I(0)
– see Lütkepohl (2004). In a VAR or VARMA framework, cointegration encourages both
maximum likelihood and OLS estimation methods to select parameters that correspond to
this stationary combination, since parameters that eliminate the trends are always associated
with the smallest deviations of actual observations from their predicted values. This result
was formally proven by Davidson and MacKinnon (1993), who also showed that a VAR
with cointegrated series produces estimates that are not only consistent, but superconsistent
(converge to their true values faster than normal).
VEC models are often used with cointegrated series because they allow for an explicit

analysis of cointegrating relations. However, a VAR in levels is suffi cient if the latter are not
the focus of study, as in our case. In fact, VAR and VEC are equivalent, as demonstrated
by Lütkepohl (2004). A VAR system of order p, (VAR(p)) in general form can be expressed
as

zt = A1zt−1 + ...+Apzt−p + εt (11)

where zt and εt are n-dimensional vectors, and Ak (1 ≤ k ≤ p) are parameter matrices.
A VEC can be obtained from the above equation by subtracting zt−1 from both sides and
rearranging the terms

zt − zt−1 = A1zt−1 − zt−1 +A2zt−2 + ....+Apzt−p + εt

∆zt = Πzt−1 + Γ1∆zt−1 + ...+ Γp−1∆zt−p+1 + εt (12)
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where Π = −(In−A1 − ...−Ap), Γi = −(Ai+1 + ...+Ap) for i = 1, ..., p − 1, and In is an
n-dimensioned identity matrix – see Lütkepohl (2004).
We test for cointegration using the maximum likelihood method, developed independently

by Johansen (1988) and Stock and Watson (1988). The method attempts to detect the
implied restrictions on an otherwise unrestricted VAR involving the series in question. An
implied restriction suggests that there exists a VEC model that is equivalent to the VAR,
something that can only happen in an integrated system. The trace version of the test
evaluates the null hypothesis of r or fewer linearly independent cointegrating vectors. The
eigenvalue version tests the null of exactly r cointegrating vectors. In our case, the trace
test suggests a cointegration order of no more than two, and the eigenvalue test suggests an
order of one (see panel C of Table 2). We conclude that the series are cointegrated, which
motivates us to use the VARMA in log-levels formulation for multivariate GARCH models
in this section.
Our first model contains a variance equation that is an asymmetric form of BEKK(1,1,1)

introduced by Grier et. al. (2004)

H t = C ′C +B′H t−1B +A′t−1εε
′
t−1A+D′ut−1u

′
t−1D (13)

where C ′C, A′A, B′B and D′D are 3 × 3 matrices with C being a triangular matrix to
ensure positive definiteness of H. This specification allows past volatilities, H t−1, as well
as lagged values of εε′ and uu′, to show up in estimating current volatilities of crude oil,
natural gas, and electricity. The asymmetry vector is denoted as ut−1 = εt−1◦Iε<0εt−1 where
◦ denotes the elementwise product of vectors. Assuming matrix H is symmetric, the model
produces six unique equations modeling the dynamic variances of oil, gas and electricity
prices, as well the covariances between them.
The second model uses the “VARMA”DCC specification. The first step in estimating

a DCC model is to obtain conditional correlations from the covariance matrix Qt, which is
typically estimated with a “GARCH (1,1)”equation governed by two scalar parameters a
and b

Qt = (1− a− b)Q0 + aεt−1ε
′
t−1 + bQt−1 (14)

where Q0 is the unconditional covariance matrix [see Engle (2002)]. The matrix Qt does
not replace H t; its sole purpose is to provide conditional correlations

√
Qij,t, i 6= j. The

H t matrix is generated by fitting univariate GARCH models to estimate the variances,
and combining these variances with

√
Qij,t to estimate the covariances. The process is

summarized as

Hij,t =
Qij,t

√
Hii,t

√
Hjj,t√

Qii,tQjj,t

. (15)

When we estimate the DCC, we use a “VARMA”specification for the variances in H t

Hii,t = cii +

3∑
j=1

aijε
2
j,t−1 +

3∑
j=1

bijHjj,t−1 + diiu
2
t−1 (16)
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where the last term represents the asymmetry coeffi cient. This specification allows for
spillovers among the variances of the three series, and also makes the form almost identical
to that used for the BEKK model, allowing for direct comparisons of model performance.

4.2 Empirical Estimates

The trivariate BEKK and DCC models described above were estimated in Estima RATS
using quasi-Maximum Likelihood. We used the BFGS (Broyden, Fletcher, Goldfarb &
Shanno) estimation algorithm, which is recommended for GARCH models, combined with
the derivative-free Simplex pre-estimation method. Tables 6 and 7 report the coeffi cients
obtained (significance levels in parentheses), as well as key diagnostics for standardized resid-
uals

ẑjt =
ejt√
ĥjt

for j = o, g, e.
The mean equation estimates are similar for the two models. Specifically, the AR(1)

coeffi cients in matrix Γ1 are very close to one along the main diagonal, while the MA(1)
coeffi cients in matrix Θ1 are small and insignificant (although the Schwarz Information
Criterion still chooses ARMA(1,1) over various AR specifications). The off-diagonal elements
in Γ1 suggest significant price spillover effects affecting the natural gas and especially the
electricity markets, but not the oil market. For example, both BEKK and DCC estimates
indicate that a 10% increase in the oil price would cause a 0.28% increase in electricity price
and a 1.3% decrease in the gas price in the next period, while a 10% in the gas price would
raise the next period’s electricity price by 1.3-1.4%. In fact, the off-diagonal estimates for
Γ1 suggest a hierarchy of influence from the oil market (which is affected by neither of the
other two markets), to gas and electricity markets. Vector γ shows that the impact of the
S&P 500 index is small and only significant in the oil price equation.
BEKK estimates show high GARCH coeffi cients along the main diagonal of B′B and

low corresponding ARCH coeffi cients in A′A, suggesting that volatility is persistent, espe-
cially in the oil and natural gas markets (this finding is mirrored in the DCC estimates).
BEKK matrix A′A and DCC matrix A reveal powerful short-term spillovers effects, with
DCC clearly showing the hierarchy of influence from oil to natural gas and electricity mar-
kets. The greatest difference between BEKK and DCC estimates is in the asymmetry coeffi -
cients. BEKK shows strong asymmetric ARCH effects in all three markets, with significant
spillovers. However, DCC shows an asymmetric effect only in the oil market.
Overall, the VARMA-BEKK and DCC models allow us to observe significant interactions

between the three wholesale energy commodity markets, including spillovers from a price
change in one asset to the volatility of another asset. Thanks to the large dataset and the
powerful multivariate model structures, we are able to not only detect these spillover effects,
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but also estimate their magnitude. Choosing models that are direct multivariate extensions
of the asymmetric GARCH(1,1) models presented in Section 3 allows us to compare the
forecasting performance of univariate versus multivariate models in the following section.

5 Forecasting and Conditional Correlations

Volatility forecasting is arguably the most important application of GARCH models in oil,
natural gas, and electricity markets. In this section we evaluate the forecasting performance
of the univariate models and the multivariate BEKK model by constructing a series of rolling
dynamic one-day forecasts (there is no simple extrapolative formula for the DCC model).
There has been considerable debate over which GARCH model type delivers the best fore-
casting performance, with no consensus to date. Andersen and Bollerslev (1998) find that
univariate GARCH models generally outperform multivariate GARCH models. Wang and
Wu (2012) find that the optimal choice of the model is sensitive to the series under study (for
example, the crude oil price versus the crack spread), but that univariate models yield more
precise estimates for asymmetry coeffi cients. Several studies compare ‘classic’multivariate
GARCH specifications, such as the BEKK and CCC, with new multivariate models, includ-
ing nonparametric GARCH [see Sadorsky (2006)] and Markov regime-switching GARCH [see
Nomikos and Pouliasis (2011)], to name a few. Generally, only the very recent multivariate
model types seem to consistently outperform simple univariate models in forecasting. How-
ever, many of these models are either diffi cult to estimate, or specialized to accommodate
large systems of financial series at the cost of imposing restrictions on interactions among
series, which are of interest in our study of interrelated energy markets.
Table 8 presents an assessment of the quality of mean-model forecasts using a range of

forecast performance statistics, including Mean Error (ME), Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE) and Theil’s U statistics [see Theil (1971)]. Theil’s U
statistic is the ratio of RMSE from the specified model to the RMSE of a “no-change”
forecast that results from a random walk model. A value of U < 1 indicates that the model
in question outperforms the random walk. In order to make the forecasts from the univariate
and multivariate GARCH models used in this paper directly comparable, we convert the
∆ ln pt forecasts from univariate models to the lnpt form. The RMSE and Theil’s U statistics
clearly indicate that univariate models outperform BEKK in forecasting. In fact, forecasts
produced by BEKK do not outperform a random walk. For example, the RMSE for oil price
is 0.21− 0.30 for univariate models, compared to 0.40 for BEKK.
The latter finding is likely due to the higher precision in key estimates achieved by using

a less computationally demanding model. The univariate models used in this paper contain
a total of 11 − 16 parameters, while the BEKK employs 69 parameters; even with a data
set of over 4000 observations, this poses significant estimation challenges. It is also worth
noting that ‘extended’univariate models augmented with additional variables deliver slightly
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better forecasting performance for natural gas and electricity prices, but not for the oil price,
supporting the notion that the crude oil price is diffi cult to forecast and is close to the random
walk in its movement. However, multivariate GARCH remains useful in the study of energy
markets because it allows us to observe complex interactions between markets.
Unfortunately, no formal statistics exist that would allow us to formally compare the

quality of variance forecasts produced by the models examined (an extremely valuable con-
tribution to the body of research in volatility forecasting would be to develop such statistics.)
After constructing sample forecasts graphs (not presented here), we found that the condi-
tional variances produced by all models estimated correctly identify periods of high and
low volatility, and yield accurate 95% confidence bounds around the forecasted price levels.
However, the mechanism tends to be rather ‘adaptive’in the sense that all GARCH models
estimated fail to anticipate a change in the direction of price movement (a characteristic
feature of autoregressive models).
Although the DCC model cannot be used for forecasting, it is an invaluable tool in

studying correlation dynamics between energy commodity prices. Figure 2 presents the
DCC conditional correlations between the returns on each commodity pair for the period
from January 2001 to April 2013. Both figures show the oil-gas and oil-electricity correlations
decreasing during times of recession or slow economic growth, specifically, 2003-2005 and
2009-2010. The correlation between natural gas and electricity increased dramatically during
the same periods. It is possible that abnormal dynamics in the wholesale oil market, as well
as increased trade in oil futures during times of uncertainty and recession weakened the
link between the oil price and energy market fundamentals. At the same time, natural gas
and electricity markets, being more responsive to fundamental factors, may have adapted
in a concerted manner to recessionary demand conditions. A second interesting feature is
the decrease in the correlation between all pairs of commodities since 2011. An interesting
direction for future research would be to investigate what caused this recent weakening of
the links between energy markets.

6 Conclusion

Globalization, growing energy demand, increasing intensity of extreme weather events and
geopolitical tensions, as well as the deregulation of electricity markets, all mean that price
volatility will remain a central feature of oil, natural gas and electricity markets for decades to
come. Originally developed in finance, GARCH models have become indispensable in short-
term volatility modelling of energy commodity prices, largely because they are very effi cient
at accommodating irregular periods of price volatility and tranquility that are characteristic
of energy markets. This paper presented an empirical application of a range of univariate
and multivariate GARCH models to daily oil, natural gas and electricity price data from
U.S. wholesale markets, for the period from 2001 to 2013.
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We found that univariate and multivariate models yield similar estimates, although uni-
variate models produce more accurate forecasts. The optimal choice of the model would
depend on the research question (e.g. forecasting versus price and volatility spillovers), the
energy commodity of greater interest, and the availability of high-quality data on exogenous
factors affecting the energy commodity price and volatility. Many other variables can po-
tentially be included to reflect relevant political events, financial market conditions, extreme
weather events like hurricanes, facility breakdowns causing supply shocks, and oil storage
inventories. Also, with wind energy generation growing at a rapid rate, future studies on
electricity volatility could benefit from incorporating wind speed data for key producing
regions. With multivariate GARCH models, on the other hand, our choice of additional
regressors is extremely limited, since each one adds an entire vector of parameters. However,
one advantage of using multivariate GARCH in our case is the opportunity to forego first-
differencing in the vector autoregressive mean equation due to the presence of cointegration
among the three series, leading to information preservation and more robust estimates.
The greatest strength of multivariate GARCH is the potential to investigate the inter-

actions among all three commodity prices and their volatilities, which makes it possible for
us to discover surprising and significant spillover effects. We find that price spillovers are
rather unidirectional, suggesting the existence of a hierarchy of influence from oil to gas
and electricity markets. These findings underline the importance of oil in the U.S. economy
today, and the far-reaching implications of events in wholesale oil markets.
By applying several types of GARCH models to oil, natural gas and electricity price

data, we contribute to the understanding of price volatility in wholesale energy markets,
and suggest several effective models that would be of use to energy market participants,
derivatives market participants, large energy consumers interested in hedging strategies, and
policymakers.
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Table 1. Summary Statistics

Excess J-B
Variable Mean Variance Skewness kurtosis normality

A. Log levels

ln ot 4:031 0:250 �0:405 �1:035 219:5
ln gt 1:594 0:176 0:035 �0:348 15:97
ln et 3:874 0:148 �0:143 0:760 83:79

B. Logarithmic �rst di¤erences

� ln ot 0:040 6:353 �0:074 5:294 3561
� ln gt �0:029 21:69 0:545 21:88 60954
� ln et �0:021 191:3 �0:053 11:97 18186



Figure 1: Descriptive Graphs for Wholesale Oil, Natural Gas and Electricity Prices. 
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Table 2. Unit Root, Stationarity And Cointegration Tests

A. Unit root and stationarity tests

Unit root tests KPSS stationarity tests
Variable ADF PP b�� b��

Log levels

ln ot �1:454 �1:506 48:27 5:864
ln gt �2:169 �2:875 11:00 9:361
ln et �3:129 �10:08 7:991 7:923

Logarithmic �rst di¤erences

� ln ot �9:508 56:85 0:043 0:030
� ln gt �11:45 �55:24 0:051 0:053
� ln et �12:45 �92:18 0:007 0:007

5% cv �2:863 �2:863 0:463 0:146
1% cv �3:436 �3:436 0:739 0:216

B. Engle-Granger cointegration tests

Dependent ADF 5% cv ADF 5% cv
variable with trend with trend no trend no trend

ln ot �4:132 �4:12 �4:190 �3:75
ln gt �5:540 �4:12 �6:175 �3:75
ln et �8:178 �4:12 �8:044 �3:75

C. Johansen ML cointegration tests
Cointegration 5% cv 5% cv

order Eigenvalue Trace (trace) (eigenvalue)

At most 1 0:0222 74:88 29:80 67:88
At most 2 0:0016 7:003 15:41 4:814
At most 3 0:0001 2:188 3:84 2:188



Table 3. Univariate GARCH Crude Oil Models

GARCH model
Coe¢ cient Baseline Extended

A. Conditional mean equation

Constant 0:088 (0:009) 0:018 (0:056)
ht�1 �0:001 (0:786)
� lnxt 0:126 (0:000)
Winter �0:141 (0:161)
Summer �0:049 (0:605)
Fall 0:160 (0:116)

B. Conditional variance equation

Constant 0:102 (0:008) 0:109 (0:008)
"2t�1 0:024 (0:022) 0:026 (0:017)
ht 0:924 (0:000) 0:921 (0:000)
"2t�1I"<0 ("t�1) 0:065 (0:000) 0:066 (0:001)
Shape 1:427 (0:000) 1:431 (0:000)

C. Standardized residual diagnostics

b" mean �0:021 �0:020b" standard error 1:005 1:005b" variance 1:011 1:011b" skeweness �0:241 �0:234b" kurtosis 2:870 2:920
Jarque-Bera 1075 1110
Q(30) p-value 0:772 0:758
Q2(30) p-value 0:201 0:277
Log likelihood �6733 �6727

Note: Numbers in parentheses are p-values.



Table 4. Univariate GARCH Natural Gas Models

GARCH model
Coe¢ cient Baseline Extended

A. Conditional mean equation

Constant �0:075 (0:214) �4:601 (0:005)
Winter 6:529 (0:232)
Summer 6:565 (0:125)
Fall 1:706 (0:839)
ln vt 0:527 (0:015)
ln vt�Winter �0:846 (0:225)
ln vt�Summer �0:840 (0:134)
ln vt�Fall �0:267 (0:799)
dct �0:023 (0:009)
dxt 0:015 (0:089)
Monday 0:848 (0:000)
Tuesday 0:813 (0:000)
Wednesday 0:700 (0:000)
Thursday 0:523 (0:008)

B. Conditional variance equation

Constant 0:336 (0:000) 0:378 (0:000)
"2t�1 0:151 (0:000) 0:167 (0:000)
ht 0:849 (0:000) 0:832 (0:000)

C. Standardized residual diagnostics

b" mean 0:011 0:015b" standard error 1:000 1:000b" variance 1:001 1:000b" skeweness 0:914 0:785b" kurtosis 11:40 9:160
Jarque-Bera 16914 10965
Q(30) p-value 0:000 0:000
Q2(30) p-value 0:996 0:996
Log likelihood �8420 �8398

Note: Numbers in parentheses are p-values.



Table 5. Univariate GARCH Electricity Models

GARCH model
Coe¢ cient Baseline Extended

A. Conditional mean equation

Constant �0:018 (0:708) 1:002 (0:008)
� ln et�1 0:513 (0:000) 0:519 (0:000)
� ln et�2 �0:128 (0:000) �0:127 (0:000)
"t�1 �0:686 (0:000) �0:696 (0:000)
Winter 0:216 (0:214)
Summer 0:221 (0:231)
Fall �0:077 (0:610)
dct �0:025 (0:016)
dxt 0:022 (0:032)
Monday �0:821 (0:187)
Tuesday �1:989 (0:000)
Wednesday �0:710 (0:223)
Thursday �2:104 (0:001)

B. Conditional variance equation

Constant 4:927 (0:000) 5:161 (0:000)
"2t�1 0:227 (0:000) 0:231 (0:000)
ht 0:771 (0:000) 0:765 (0:000)

C. Standardized residual diagnostics

b" mean 0:014 0:008b" standard error 1:000 1:000b" variance 1:000 1:000b" skeweness 0:512 0:480b" kurtosis 3:920 3:737
Jarque-Bera 2085 1890
Q(30) p-value 0:000 0:000
Q2(30) p-value 0:025 0:020
Log likelihood �11509 �11496

Note: Numbers in parentheses are p-values.



Table 6. The Trivariate Varma, Garch-in-Mean, Asymmetric BEKK Model With Daily
Crude Oil, Natural Gas, and Electricity Prices

A. Conditional mean equation

φ =

⎡⎣ 0001 (0916)
0037 (0000)
0380 (0000)

⎤⎦; Γ =
⎡⎣ 0999 (0000) −0001 (0783) 0001 (0538)
0000 (0737) 1007 (0000) −0013 (0000)
0028 (0000) 0134 (0000) 0816 (0000)

⎤⎦; γ =
⎡⎣ 0001 (0001)
−0001 (0166)
0000 (0595)

⎤⎦;

Ψ =

⎡⎣ 0105 (0170) −0048 (0007) −0001 (0799)
−0043 (0608) −0033 (0511) 0002 (0794)
−0279 (0165) 0072 (0295) 0052 (0198)

⎤⎦; Θ =
⎡⎣ −0032 (0056) 0016 (0049) −0004 (0262)

0219 (0000) −0007 (0734) 0030 (0000)
0176 (0001) 0010 (0764) −0077 (0005)

⎤⎦.

B. Conditional variance-covariance structure

C0C =

⎡⎣ 0003 (0000) 0000 (0692) 0004 (0153)
0006 (0000) 0002 (0370)

0021 (0000)

⎤⎦; B0B =

⎡⎣ 0966 (0000) 0002 (0784) −0048 (0073)
0002 (0377) 0934 (0000) 0056 (0000)
−0001 (0870) −0003 (0084) 0870 (0000)

⎤⎦;

A0A =

⎡⎣ −0013 (0604) −0063 (0005) −0074 (0286)−0010 (0055) 0312 (0000) −0126 (0000)
0001 (0626) 0011 (0000) 0461 (0000)

⎤⎦; D0D =

⎡⎣ 0282 (0000) −0061 (0076) 0235 (0024)
0033 (0045) 0245 (0000) 0356 (0000)
−0007 (0036) −0004 (0636) −0297 (0000)

⎤⎦.
C. Residual diagnostics

Mean Std. Error Skewness Kurtosis (40) 2(40)
̂ −0003 0996 −0242 3201 4288 (0348) 6371 (0010)
̂ 0015 0982 0816 1030 9243 (0000) 2363 (0981)
̂ 0036 0989 0501 3753 2562 (0000) 6642 (0005)

Note : Sample period, daily data: January 2, 2001 to April 26, 2013. Numbers in parentheses are tail areas of tests.



Table 7. The Trivariate Varma, Garch-in-Mean, Asymmetric DCC Model With Daily
Crude Oil, Natural Gas, and Electricity Prices

A. Conditional mean equation

φ =

⎡⎣ 0002 (0762)
0030 (0007)
0403 (0000)

⎤⎦; Γ =
⎡⎣ 0998 (0000) −0001 (0812) 0002 (0527)
0002 (0073) 1007 (0000) −0013 (0001)
0028 (0000) 0140 (0000) 0807 (0000)

⎤⎦; γ =
⎡⎣ 0001 (0001)
−0001 (0177)
−0001 (0910)

⎤⎦;

Ψ =

⎡⎣ 0044 (0541) −0027 (0131) −0003 (0559)
−0010 (0888) −0006 (0913) 0002 (0862)
−0174 (0343) 0095 (0231) 0056 (0239)

⎤⎦; Θ =
⎡⎣ −0033 (0065) 0012 (0131) −0003 (0401)

0218 (0000) −0010 (0637) 0030 (0000)
0171 (0004) −0004 (0915) −0059 (0054)

⎤⎦.

B. Conditional variance-covariance structure

C =

⎡⎣ 0000 (0002)
0000 (0000)
0001 (0002)

⎤⎦; B =

⎡⎣ 0874 (0000) −0025 (0382) −0005 (0688)
0442 (0003) 0807 (0000) 0005 (0705)
0824 (0117) −0133 (0083) 0716 (0000)

⎤⎦;D =

⎡⎣ 0103 (0000)
0002 (0925)
0002 (0944)

⎤⎦

A =

⎡⎣ 0035 (0004) −0006 (0410) −0004 (0058)
−0091 (0000) 0150 (0000) 0015 (0008)
−0186 (0007) −0109 (0000) 0272 (0000)

⎤⎦;  = 005;  = 0995;

C. Residual diagnostics

Mean Std. Error Skewness Kurtosis (40) 2(40)
̂ −0014 0999 −0241 2624 4360(0321) 4985 (0137)
̂ 0007 0997 0679 8310 8955(0000) 1952 (0997)
̂ 0022 0998 0463 3555 2446(0000) 6920 (0002)

Note : Sample period, daily data: January 2, 2001 to April 26, 2013. Numbers in parentheses are tail areas of tests.



Table 8. Forecast Performance Statistics

ME MAE RMSE Theil�s U
(in dollars) (in dollars) (in dollars) (1-step)

A. Univariate baseline model

ln ot 0:094 0:225 0:291 0:963
ln gt 0:001 0:311 0:460 0:998
ln et 0:002 0:084 0:128 0:932

B. Univariate extended model

ln ot 0:082 0:234 0:299 0:999
ln gt 0:002 0:310 0:416 0:700
ln et 0:001 0:084 0:125 0:915

C. VARMA BEKK model

ot �0:021 0:342 0:401 1:592
gt 0:174 0:438 0:538 1:133
et 0:149 0:373 0:465 1:367

D. Random walk

ln ot 0:094 0:225 0:291 0:963
ln gt 0:001 0:311 0:460 0:998
ln et �0:015 0:119 0:239 1:000



Figure 2: Dynamic Conditional Correlations Between Oil, Natural Gas and Electricity Returns. 
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