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1 Introduction

Currently, the common practice among central banks is to use ‘simple-sum’aggregation to
construct money measures from a list of possible components that are considered to be the
likely sources of monetary services, as follows

M =
n∑
j=1

xj

where M is the monetary aggregate and xj is one of the n monetary components of the
monetary aggregate. However, Friedman and Schwartz (1970, p. 151—152) dismissed simple-
sum monetary aggregates, arguing that “this (summation) procedure is a very special case
of the more general approach. In brief, the general approach consists of regarding each asset
as a joint product having different degrees of moneyness, and defining the quantity of money
as the weighted sum of the aggregate value of all assets, the weights for individual assets
varying from zero to unity with a weight of unity assigned to that asset or assets regarded
as having the largest quantity of ‘moneyness’per dollar of aggregate value. The procedure
we have followed implies that all weights are either zero or unity.”
Over the years, there have been many attempts at properly weighting the monetary

components within a simple-sum aggregate, but without theory, any weighting scheme is
questionable. Barnett (1980) argued instead for applying aggregation theory and statistical
index number theory to monetary aggregation. He also argued [see Barnett (1980, p. 12)]
that “[w]hile aggregation theory results in exact aggregator functions depending upon un-
known (but estimable) parameters, statistical index number theory results in parameter-free
approximations to aggregator functions. Index number theory provides the basis for the
index numbers published by nearly every governmental agency in the world (other than the
central banks).”In this regard, statistical index number theory provides a class of quantity
and price indexes that can be computed from price and quantity data alone, thus eliminating
the need to estimate an underlying structure. Statistical indexes are mainly characterized by
their statistical properties. These properties were examined in great detail by Fisher (1922)
and serve as tests in assessing the quality of statistical indexes. While Fisher (1922) found
the simple-sum index to be the worst known index number formula, the index that he found
to be the best has now become known as the Fisher ideal index, which is the geometric
average of the Laspeyres and Paasche indexes. Another index found to possess a very large
number of such properties is the (Törnqvist) discrete time approximation to the continuous
Divisia (1925) index; Divisia (1925) proposed the continuous time index for aggregating over
goods.
Barnett (1978, 1980) proved how the Divisia approach to aggregation could be extended

to include monetary assets and constructed monetary quantity indexes, now known as Divisia
monetary aggregates. The Divisia index (in discrete time) is defined by

logMD
t − logMD

t−1 =
n∑
j=1

w∗jt(log xjt − log xj,t−1)

according to which the growth rate of the aggregate is the weighted average of the growth
rates of the component quantities, with the weights being defined as the expenditure shares
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averaged over the two periods of the change, w∗jt = (1/2)(wjt +wj,t−1) for j = 1, ..., n, where
wjt = πjtxjt/

∑n
k=1 πktxkt is the expenditure share of asset j during period t, and πjt is the

user cost of asset j, derived in Barnett (1978)

πjt =
(Rt − rjt)
(1 +Rt)

which is just the opportunity cost of holding a dollar’s worth of the jth asset. In the equation
above, rjt is the market yield on the jth asset and Rt is the yield available on a ‘benchmark’
asset that is held only to carry wealth between multiperiods – see Barnett et al. (1992),
Barnett and Serletis (2000), or Barnett (2012) for more details regarding the Divisia approach
to monetary aggregation. Barnett has also extended the field of index number theory to
include risk in Barnett (1995), Barnett et al. (1997), and Barnett and Wu (2005). He
extended index number theory to multilateral international financial aggregation in Barnett
(2007), for multicountry economic unions. More recently, Barnett et al. (2016) further
extended the Divisia monetary aggregates to the credit card-augmented Divisia monetary
aggregates, which jointly account for the liquidity services provided by monetary assets and
credit cards.
Over the years a large number of articles have shown that the use of the Divisia monetary

aggregates can solve the “Barnett critique”– the measurement problems associated with
the failure to find significant relations between money and key macroeconomic variables.
See, for example, Barnett and Chauvet (2011), Hendrickson (2014), Serletis and Gogas
(2014), Belongia and Ireland (2014, 2015, 2016, 2018), Ellington (2018), Dai and Serletis
(2020), and Dery and Serletis (2020), among others. In fact, Belongia and Ireland (2015,
p. 268) “call into question the conventional view that the stance of monetary policy can be
described with exclusive reference to its effects on interest rates and without consideration of
simultaneous movements in the monetary aggregates.”They argue that properly measured
monetary aggregates, such as the new Center for Financial Stability (CFS) Divisia monetary
aggregates, can and should play an important role (either as intermediate targets or indicator
variables) for the conduct of monetary policy, in addition to that of the short-term nominal
interest rate.
The fields of aggregation theory and statistical index number theory developed indepen-

dently. However, Diewert (1976) provided the link between economic and aggregation theory
and statistical index number theory by attaching economic properties to statistical indexes.
These properties are defined in terms of the ability of a statistical index to approximate a
particular functional form for the unknown underlying aggregator function. In fact, for a
number of well known statistical indexes Diewert (1976) shows that they are equivalent to
the use of a particular functional form. Such statistical indexes are called ‘exact.’Exactness,
however is not suffi cient for acceptability of a particular statistical index when the functional
form for the aggregator function is not known. In this case it seems desirable to choose a
statistical index which is exact for a flexible functional form. Diewert termed such statistical
indexes ‘superlative.’ Diewert also showed that the Divisia index is exact for the linearly
homogeneous translog flexible functional form, and is, therefore, superlative.
The translog flexible functional form, introduced by Christensen et al. (1975), is a locally

flexible functional form (a second-order local approximation to an arbitrary function), and as
Caves and Christensen (1980) and Barnett and Lee (1985) have shown the regularity regions
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of locally flexible functional forms can be relatively small. However, over the years, an in-
creasingly sophisticated literature has been under development on flexible functional forms.
There is now a large number of other locally flexible functional forms, including the gener-
alized Leontief (GL), introduced by Diewert (1973), and the Almost Ideal Demand System
(AIDS), introduced by Deaton and Muellbauer (1980). There are also the effectively glob-
ally regular minflex Laurent (ML) models, which are based on the Laurent series expansion
and were introduced by Barnett (1983) and Barnett and Lee (1985), the quadratic AIDS
(QUAIDS) model of Banks et al. (1997), the general exponential form (GEF) of Cooper
and McLaren (1996), and the normalized quadratic (NQ) models, introduced by Diewert
and Wales (1988). Also, the globally flexible Fourier and Asymptotically Ideal Model (AIM)
models, introduced by Gallant (1981) and Barnett and Jonas (1983), respectively, could be
used.
This raises interesting methodological questions. If the Divisia index is exact to the

linearly homogeneous translog flexible functional form, which has a relatively small regular
region, can we use a statistical index from the statistical index number literature that is
exact to a flexible functional form that has a larger regularity region? We are not aware of
statistical indexes that can be shown to be exact to the effectively globally regular flexible
functional forms or the globally flexible functional forms. For this reason, in this paper we
build on a large body of literature, which Barnett (1997) calls the ‘high road’ literature,
and take a microeconomic- and aggregation-theoretic approach to the demand for monetary
assets and monetary aggregation. The approach that we take allows the estimation in a
systems context assuming a flexible functional form for the aggregator function, based on
the dual approach to demand system generation developed by Diewert (1974). We estimate
two popular, effectively globally regular flexible functional forms, the minflex Laurent and
normalized quadratic, to produce the ML and NQ functional monetary aggregates. We do
so, in the context of highly disaggregated demand systems, encompassing the full range of
monetary assets, unlike earlier work in this area that has generally been carried out in the
context of small, highly aggregated demand systems.
In doing so, we pay explicit attention to theoretical regularity, since the usefulness of flex-

ible functional forms depends on whether they satisfy the theoretical regularity conditions
of positivity, monotonicity, and curvature, and in the older monetary demand systems liter-
ature there has been a tendency to ignore regularity. In fact, as Barnett (2002, p. 199) put
it in his Journal of Econometrics Fellow’s opinion article, without satisfaction of all three
theoretical regularity conditions “ ... the second-order conditions for optimizing behavior
fail, and duality theory fails. The resulting first-order conditions, demand functions, and
supply functions become invalid.”Motivated by these considerations, we treat the curvature
property as a maintained hypothesis in order to produce functional monetary aggregates
consistent with neoclassical microeconomic theory and aggregation theory. We argue that
unless regularity is attained by luck, flexible functional forms should always be estimated
subject to regularity, as suggested by Barnett (2002).
We also address the issue of optimal monetary aggregation by (assuming that money

has positive value in equilibrium, implying the existence of a monetary services aggregator
function and) estimating large demand systems, encompassing the full range of monetary
assets, to produce broad functional monetary aggregates. In this regard, Jadidzadeh and
Serletis (2019) also address the issue of optimal monetary aggregation in the context of a
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large demand system. They provide evidence, based on disaggregated monetary demand
responses, that the simple-sum monetary aggregates used by central banks around the world
are inconsistent with neoclassical microeconomic theory. Their statistical tests also reject
the necessary and suffi cient conditions for all the money measures published by the Federal
Reserve as well as a large set of null hypotheses that would be consistent with the existence
of subaggregates of various subsets of liquid assets. Their tests support and reinforce Bar-
nett’s (2016) assertion that we should use, as a measure of money, the broadest Divisia M4
monetary aggregate prepared by the Center for Financial Stability.
Finally, we highlight the influence of measurement on statistical inference by investigat-

ing whether the ML and NQ (broad) functional monetary aggregates are of importance in
resolving paradoxes associated with the measurement of money, in solving the Barnett cri-
tique, and in understanding the effects of potential monetary policy actions. We do so in the
context of two dynamic general equilibrium monetary business models, the Ireland (2004)
and Andrés et al. (2006) models, both of which find a minimal role of money in business
cycle analysis. We also test for Granger causality from the ML and NQ functional monetary
aggregates to industrial production, using the conventional VAR approach as well as the
Psaradakis et al. (2005) Markov-switching model with time-varying parameters. We also
provide a comprehensive comparison between the functional aggregates, ML and NQ, and
the Fed’s Sum M2 aggregate and the CFS broad Divisia M3 and Divisia M4 aggregates.
The rest of the paper is organized as follows. Sections 2 and 3 briefly sketch related

neoclassical demand theory and aggregation theory. Section 4 presents the ML and NQ
demand systems and discusses related econometric issues, paying explicit attention to the
singularity problem and the imposition of global concavity. Section 5 discusses the data and
presents the broad ML and NQ functional monetary aggregates. Section 6 presents the first
group of empirical results and Section 7 presents the Granger causality test results. The
final section concludes regarding the implications of our research for monetary theory, the
conduct of monetary policy, and business cycle analysis.

2 Neoclassical Demand Theory

Let’s consider an economy with identical households whose direct utility function is weakly
separable (a direct tree) as follows

U = f (c, `, u (x)) (1)

where c is a κ-vector of consumption goods, l is leisure time, and x is a n-vector of the
services of monetary assets (assumed to be proportional to the stocks). The utility-tree
structure (1) is treated as a maintained hypothesis in this paper, as is the case with a large
number of studies in the literature. It implies that the demand for monetary services is
independent of relative prices outside the monetary group

∂ [(∂u/∂xi) / (∂u/∂xj)] /∂ck = 0, for k = 1, ..., κ, and ∂ [(∂u/∂xi) / (∂u/∂xj)] /∂` = 0

where the expression in brackets is the marginal rate of substitution between monetary assets
i and j.
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Under the assumptions made, we can focus on the details of the demand for the services
of monetary assets, ignoring the services of consumption goods, c, and leisure, `, in terms of
the following consumer problem

max
x

u (x) subject to p′x = y (2)

where y is the expenditure on the services of monetary assets and p = (p1, ..., pn)′ is the
vector of monetary asset nominal user costs, with the jth element given as in Barnett (1978)
by

pj = P
R− rj
1 +R

, j = 1, ..., n

where P is the aggregate price level, R is the yield on an alternative asset (called benchmark
asset), and rj is the yield on the jth asset.
The solution of the first-order conditions for utility maximization is the demand system

x = x (p, y) .

and the indirect utility function h (p, y) = u [x(p, y)].

2.1 The Indirect Utility Function

As already noted, the maximum level of utility at given prices and income, h (p, y) =
u [x(p, y)], is the indirect utility function. The direct utility function and the indirect util-
ity function are equivalent representations of the underlying preference preordering. Using
h (p, y), we can derive the demand system by straightforward differentiation, without having
to solve a system of simultaneous equations, as would be the case with the direct utility
function first order conditions. In particular, Roy’s identity

x(p, y) = −∂h(p, y)/∂p

∂h(p, y)/∂y
(3)

allows us to derive the demand system, provided there is an interior solution and that p >
0 and y > 0. Alternatively, the logarithmic form of Roy’s identity

s(p, y) = − (∂ log h(p, y)/∂ logp) / (∂ log h(p, y)/∂ log y)

or Diewert’s (1974, p. 126) modified version of Roy’s identity

sj(v) =
vj∇h(v)

v′∇h(v)
(4)

can be used to derive the demand system in budget share form s = (s1, ..., sn)′, where
sj = pjxj(p, y)/y is the expenditure share of asset j, v = (v1, ..., vn)′ is a vector of expenditure
normalized prices, with the jth element being vj = pj/y, and ∇h(v) = ∂h(v)/∂v.
The indirect utility function, h (p, y), is continuous in (p, y) and has the following prop-

erties: (i) positivity; (ii) homogeneity of degree zero in (p, y); (iii) decreasing in p and
increasing in y; (iv) strictly quasi-convex in p; and (v) satisfies Roy’s identity. Together,
properties (i)-(iv) are called the ‘regularity conditions.’ In the terminology of Caves and
Christensen (1980), an indirect utility function is ‘regular’at a given (p, y), if it satisfies the
above properties at that (p, y). Similarly, the ‘regular region’is the set of prices and income
at which an indirect utility function satisfies the regularity conditions.
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2.2 Functional Monetary Aggregates

Using a specific and differentiable form for the indirect utility function, h (p, y), and applying
Roy’s identity, we can derive the demand system. Using the derived demand system and
specific monetary data, we then could estimate the parameters and replace the unknown
parameters of h (p, y) by their estimates. The resulting estimated function is called an
economic (or functional) monetary index, and its calculated value at any point in time is an
economic monetary-quantity index number.
The problem is that the use of a specific functional form for the indirect utility function,

h (p, y), necessarily implies a set of implicit assumptions about the underlying preference
structure of the economic agent. For example, the use of a weighted linear aggregator
function, implies perfect substitutability among the assets. The use of a Cobb-Douglas
functional form imposes an elasticity of substitution equal to unity between every pair of
assets. Similarly, a constant elasticity of substitution functional form, although it relaxes the
unitary elasticity of substitution restriction imposed by the Cobb-Douglas, it imposes the
restriction that the elasticity of substitution between any pair of assets is always constant.
For many years, the literature concentrated on the use of globally regular functional forms,

such as the Cobb-Douglas and the constant elasticity of substitution functional forms. These
forms globally satisfy the theoretical regularity conditions for rational neoclassical economic
behavior. However, most members of this class of functions should be rejected, partly because
of the restrictive nature of their implicit assumptions, and partly because of the existence
of attractive alternatives. Among the alternatives are the flexible functional forms that
have been developed, since the publication of Diewert’s (1971) seminal paper on duality, to
approximate unknown aggregator functions such as our indirect utility function, h (p, y).
Three popular flexible functional forms are the generalized Leontief, introduced by Diew-

ert (1973), the translog, introduced by Christensen et al. (1975), and the almost ideal
demand system of Deaton and Muellbauer (1980). As noted by Barnett and Serletis (2008),
these locally flexible models provide the ability to attain arbitrary elasticities of substitution,
although at only one point. However, as argued by Caves and Christensen (1980) and Bar-
nett and Lee (1985), most popular locally flexible functional forms have very small regions
of theoretical regularity. These models thereby violate the conditions for the duality theory
from which the models were derived, except at points within the regular region.
A result was the development of, what Cooper and McLaren (1996) classify as, ‘effectively

globally regular’flexible functional forms, that is, locally flexible functional forms that have
large (but not global) regular regions. These functions typically have regular regions that
include almost all data points in the sample. In addition, the regularity regions increase
as real expenditure levels grow, as is often the case with time series data. Examples of
these functions include Barnett’s minflex Laurent (ML) models, based on the Laurent series
expansion, and the quadratic AIDS (QUAIDS) model of Banks et al. (1996). Moreover,
Diewert and Wales (1988) proposed two locally flexible models for which the theoretical
curvature conditions can be imposed globally – the first system is derived from a normalized
quadratic (NQ) reciprocal indirect utility function and the second is derived from a NQ
expenditure function.
Finally, a path-breaking innovation in this area was provided by Gallant (1981) in his

introduction of the semi-nonparametric inference approach, which uses series expansions in
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infinite dimensional parameter spaces. The idea behind the semi-nonparametric approach
is to expand the order of the series expansion, as the sample size increases, until the semi-
nonparametric function converges asymptotically to the true function generating the data.
Semi-nonparametric functional forms are globally flexible in the sense that the model as-
ymptotically can reach any continuous function. Two globally flexible functional forms in
general use are the Fourier flexible functional form, introduced by Gallant (1981), and the
Asymptotically Ideal Model (AIM), introduced by Barnett and Jonas (1983) and employed
and explained in Barnett and Yue (1988) and Barnett et al. (1999).
The problem with the functional approach to monetary aggregation (or aggregation in

general) is that the functional aggregate will depend on the specific flexible functional form
that is used to approximate the underlying aggregator function, in the same way as statis-
tical monetary aggregates depend on the statistical index number formula used. Moreover,
the function must be estimated over specific data sets and re-estimated periodically. This
dependence is particularly troublesome to government agencies, and it is exacerbated by the
fact that there are many possible flexible functional forms from which to choose. Under
these circumstances, government agencies around the world have always viewed aggregation
theory as being solely a research tool, and have instead used index number formulas from
statistical index number theory that we discussed in the introduction.
In this paper, we take what Barnett (1997) refers to as the ‘high road’approach to the

demand for money and monetary aggregation. We build on recent advances in microecono-
metrics and the increase in computational power that allow the estimation of very detailed
monetary asset demand systems, without making any restrictive separability assumptions to
restrict the dimension of the parameter space. We use two of the most popular, effectively
globally regular flexible functional forms to estimate highly disaggregated demand systems,
and produce two functional monetary aggregates encompassing the full range of monetary as-
sets in the United States, consistent with neoclassical microeconomic theory and aggregation
theory.

3 Flexible Functional Forms

In this paper, we use two flexible functional forms to approximate the underlying unknown
indirect utility function, h (p, y). The first is the Minflex Laurent (ML) model, documented
in detail in Barnett (1983) and Barnett and Lee (1985), and the second is the normalized
quadratic (NQ) expenditure function, introduced by Diewert and Wales (1988).

3.1 The Minflex Laurent Model

The ML model is based on the Laurent series expansion, which is a generalization of the
Taylor series expansion. It is also known as the Minflex Laurent generalized Leontief model,
as it represents a generalization of the generalized Leontief model, proposed by Diewert
(1974), and which is based on a Taylor series expansion.
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The ML reciprocal indirect utility function can be written as

1/h (v) = c+ 2δ′
√
v +

n∑
i=1

diiνi +

n∑
i=1

n∑
j=1,j 6=i

d2ijνi
1
2νj

1
2 −

n∑
i=1

n∑
j=1,j 6=i

h2ijνi
− 1
2νj
− 1
2 (5)

where n denotes the number of goods, νi denotes the income normalized price (pi/y), c is a
constant, and δ = (δ1, . . . , δn)′, and dij and hij are all parameters.
The share equations of the ML demand system (for i = 1, . . . , n)

si =

δiν
1
2
i + diiνi +

n∑
j=1,j 6=i

d2ijν
1
2
i ν

1
2
j +

n∑
j=1,j 6=i

h2ijν
− 1
2

i ν
− 1
2

j

δ′
√
v +

n∑
i=1

diiνi +
n∑
i=1

n∑
j=1,j 6=i

d2ijν
1
2
i ν

1
2
j −

n∑
i=1

n∑
j=1,j 6=i

h2ijν
− 1
2

i ν
− 1
2

j

. (6)

Note the share equations (6) are homogeneous of degree of zero in the parameters. Therefore,
following Barnett and Lee (1985), we impose the normalization

n∑
i=1

dii + 2
n∑
i=1

δi +
n∑
i=1

n∑
j=1,j 6=i

d2ij −
n∑
i=1

n∑
j=1,j 6=i

h2ij = 1 (7)

and the restrictions
dij = dji, hij = hji, dijhij = 0, i 6= j (8)

leaving n2 + n linearly independent parameters to be estimated.

3.2 The Normalized Quadratic Model

The NQ expenditure function is defined as follows

C (p, u) = θ′p+

(
b′p+

1

2

π′Bp

α′p

)
u (9)

where θ = (θ1, . . . , θn)′, b = (b1, . . . , bn)′, and the elements of the n × n matrix B ≡ [βij]
are the unknown parameters to be estimated. Its corresponding indirect utility function is
also given by Diewert and Wales (1988) and it is

h (v) =
1− θ′v

b′v + 1
2

(α′v)−1 v′Bv
. (10)

To ensure the flexibility and Gorman polar form of the NQ form, we follow Diewert and
Wales (1988) and impose the following restrictions

n∑
i=1

αip
∗
i = 1, αi ≥ 0 ∀i (11)

n∑
i=1

θip
∗
i = 0 (12)
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and
n∑
j=1

βijp
∗
j = 0 ∀i and βij = βji, ∀i, j (13)

where p∗ � 0n is a reference (or base-period) vector of normalized prices, determined in
such a way that p∗ = 1n. The non-negative vector α = (α1, . . . , αn)′ is predetermined as a
vector of ones (α = 1n) – see Diewert and Wales (1988) for more details.
The NQ demand system in budget share form is

s (v) = v̂θ + v̂
bαTv +Bv − 0.5(αTv)−1vTBvα

bTvαTv + 0.5vTBv
×
(
1− θTv

)
(14)

with (n2 + n)/2 + 2n linearly independent parameters to be estimated.

4 Demand System Estimation

4.1 Stochastic Specification

In order to estimate demand systems such as (6) and (14), a stochastic version must be
specified. It is typically assumed that the observed share in the jth equation deviates from
the true share by an additive disturbance term εj. With the addition of additive errors, each
of the share equation systems (6) and (14) can be written in matrix notation as

st = s (vt,θ) + εt (15)

where st = (s1t, . . . , snt)
′ is a vector of budget shares with the jth element being sj = pjxj/y,

vt = (v1t, ..., vnt)
′ is a vector of expenditure normalized prices with the jth element being

vj = pj/y, εt = (ε1t, ..., εnt)
′ is a vector of classical disturbance terms, and θ is the parameter

vector to be estimated.

4.2 Singularity and Invariance

When estimating θ in equation (15), a typical assumption about εt is homoscedasticity. This
assumption requires

εt ∼ N (0,H)

where 0 is an n-dimensional null vector andH is the n×n covariance matrix. The assumption
of a classical disturbance term permits correlation among the disturbances at time t but rules
out the possibility of autocorrelated disturbances. Since the demand system satisfies the
adding up property, the error covariance matrix H is singular. This introduces a technical
problem when the demand system is estimated, since either generalized least squares or
maximum likelihood (ML) needs to invert the covariance matrix, H. Barten (1969) and
McLaren (1990) show that maximum likelihood estimates can be obtained by arbitrarily
dropping any good (or, equivalently, equation) in the system (15).
It is to be noted that recently Serletis and Isakin (2017) and Serletis and Xu (2020) relax

the homoscedasticity assumption and instead assume that the covariance matrix of the errors,
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H, is time-varying. In doing so, they consider the VECH and BEKK parameterizations
of the variance model, and analytically prove the invariance of the maximum likelihood
estimator with respect to the choice of the good deleted from a singular demand system. We
are not relaxing the homoscedasticity assumption in this paper, because of the computational
problems in the large parameters space that the parameterizations of the variance model
introduces.

4.3 Estimation with Autoregressive Disturbances

Autocorrelation in liquid asset demand systems is a common result, potentially caused by
institutional constraints which present economic agents from adjusting their asset holdings
within one period. In such cases, usually a first-order autoregressive process is assumed such
that

εt = ρεt−1 + ξt

where ρ = [ρij] is a matrix of unknown parameters and ξt is a non-autocorrelated vector
disturbance term with constant covariance matrix. In this case, ML estimates of the pa-
rameters can be obtained by using a result developed by Berndt and Savin (1975). They
showed that if there is a matrix of autocorrelation parameters ρ then adding up implies that
the columns of this matrix must add to a common constant. So the maximum likelihood
estimation only requires that this constraint be incorporated to achieve invariance to the
deleted equation. They also showed that if one assumes no autocorrelation across equations
(i.e., ρ is diagonal), then the diagonal elements must all be equal, ρ11 = ... = ρnn = ρ. Thus,
by writing equation (15) for period t − 1, multiplying by ρ, and subtracting from (15), we
can estimate stochastic budget share equations given by

st = s (vt,θ) + ρst−1 − ρs (vt−1,θ) + ξt. (16)

In this paper, we follow Mochini and Moro (1994) and choose a more parsimonious and
flexible specification of the autocorrelation matrix, ρ. Mochini and Moro (1994) shows that
a singular autcorrelation matrix ρ, whose columns add to 0, will not result in any loss of
generality. Assuming the autcorrelation matrix ρ is singular, Mochini and Moro (1994)
suggests that ρ can be written as

ρ = Λ− λλ′∑n
z=1 λz

where Λ is an n× n matrix and λ is an n× 1 vector, defined as

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 and λ =


λ1
λ2
...
λn

 .
Therefore, ρ is modeled to be a singular, symmetric, and dependent on n free parameters,
λi (i = 1, ..., n), matrix. Let ω be the (n − 1) × 1 vector of share equations after deleting
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the ith equation, where i ∈ [1, n]. Then the subsystem, which is obtained by deleting the
ith equation in (16) is written as

ωt = ω (vt,θ) + φωt−1 − φω (vt−1,θ) + ζt

where φ is a matrix whose elements are

φjj = λj −
λj(λj − λi)∑n

z=1 λz

and

φjk = −λj(λk − λi)∑n
z=1 λz

, j 6= k.

In what follows, we use the Mochini and Moro (1994) specification of the autocorrelation
matrix in the estimation of the ML and NQ demand systems with n = 13 monetary assets.

4.4 Theoretical Regularity

We also pay explicit attention to the theoretical regularity conditions of positivity, monotonic-
ity, and curvature in our ML and NQ demand systems. As noted by Barnett (2002), without
satisfaction of theoretical regularity, “the second-order conditions for optimizing behavior
fail, and duality theory fails. The resulting first-order conditions, demand functions, and
supply functions become invalid.”
The theoretical regularity conditions can be checked as follows [see Barnett and Serletis

(2008) for more details]:

• Positivity is checked by direct computation of the estimated indirect utility function
ĥ(v); it is satisfied, if ĥ(v) > 0, for all t.

• Monotonicity is checked by direct computation of the values of the first gradient vector
of the estimated indirect utility function; it is satisfied, if ∇ĥ(v) < 0.

• Curvature requires that the Slutsky matrix be negative semidefinite and can be checked
by performing a Cholesky factorization of that matrix; it is satisfied, if the Cholesky
values are nonpositive. See Lau (1978, Theorem 3.2).

If the curvature conditions of the ML and NQ systems are not satisfied, we impose curva-
ture in order to produce functional monetary aggregates that are consistent with neoclassical
microeconomic theory. In particular, in the case of the ML demand system, we follow Barnett
(1983) and impose the curvature condition globally by replacing all non-squared parameters
by squared parameters. In the case of the NQ system, we follow Diewert and Wales (1988),
and impose global concavity by setting B = −KK ′, where K = [kij] is a lower triangular
matrix. For example, in the case with three goods (n = 3), concavity of the NQ expenditure
function can be imposed by replacing the elements of B in (14) by the elements of K, as
follows

β11 = −k211
β12 = −k11k12
β22 = −(k212 + k222).
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The other elements of B can be recovered using restriction (13) as follows

β13 = −(β11 + β12)

β23 = −(β12 + β22)

β33 = β11 + 2β12 + β22.

5 Empirical Results

5.1 Data

We follow Jadidzadeh and Serletis (2019) and use the monthly time series data on monetary
asset quantities and their user costs recently produced for the United States by Barnett et
al. (2013), and maintained within the CFS program Advances in Monetary and Financial
Measurement (AMFM). Although the CFS data goes back to 1967:1, we begin our demand
analysis in 1974:6, because some key assets (including money-market funds) were not intro-
duced into the U.S. financial system until the mid-1970s. Thus, our sample period is from
1974:6 to 2018:5 (a total of 526 observations).
In particular, we model the demand for the 13 monetary assets listed in Table 1 and

included in the broadest CFS Divisia M4 monetary aggregate. As we require real per capita
asset quantities for the empirical work, we divide each quantity series by the CPI (all items)
and total population. We also add 0.01 to all the real user cost series obtained from the CFS
in order to deal with some zero real user cost observations in the original data. We multiply
the modified real user costs by the CPI to get nominal user costs. For a detailed discussion
of the data and the methodology for the calculation of user costs, see Barnett et al. (2013)
and http://www.centerforfinancialstability.org.

5.2 Maximum Likelihood Estimation

We estimate the models using the full information maximum likelihood procedure in RATS
9.2 (32). Both models are estimated with the curvature conditions imposed, as discussed
in the previous section, and there are no induced positivity and monotonicity violations,
thus obtaining parameter estimates that are consistent with all three theoretical regularity
conditions at every point in the sample. We do not report the 182 parameters with the ML
demand system and the 117 parameters with the NQ demand system (and their standard
errors), but note that almost all of them are statistically significant at conventional signifi-
cance levels. We report the implied autocorrelation matrix ρ by the estimated λ for each of
the ML and NQ models in Table 2. The parameters on the diagonal of ρ suggest that the
error terms have a high degree of autocorrelation.

5.3 The ML, NQ, and Divisia Monetary Aggregates

In this paper, we are not interested in the estimated income (expenditure) elasticities, own-
and cross-price elasticities, and Allen and Morishima elasticities of substitution. Instead, we
use the maximum likelihood parameter estimates to replace the unknown parameters of the
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indirect utility function, h (p, y), in each of (5) and (10) by their estimates to obtain the ML
and NQ functional monetary aggregates, respectively. We then multiply each of the real per
capita monetary aggregates by total population and the CPI to convert them to nominal
terms and for the overall economy. We also normalize each of the ML and NQ monetary
aggregates so that their first observation equals 100.
The logged ML and NQ functional monetary aggregates are plotted in Figures 1 and

2, respectively, together with their growth rates (on the y2 axis); the shaded areas indicate
NBER recessions. For comparison purposes, in Figure 3 we present the ML and NQ aggre-
gates together with the Fed’s Sum M2 aggregate (on the y2 axis) and the CFS Divisia M3
and Divisia M4 aggregates; the Divisia M3 and M4 series are also normalized so that the
June 1974 observation is 100. Finally, in Figure 4 we present the annualized growth rates
for all five monetary aggregates. According to these figures, the dynamics of the ML and
NQ functional monetary aggregates are quite similar.
As can be seen in Figure 4, the dynamics of the Fed’s SumM2 aggregate are very different

from the dynamics of the ML, NQ, and Divisia monetary aggregates, confirming our earlier
claim that the Fed’s simple-sum monetary aggregates are seriously flawed. They impose
assumptions on the substitutability between monetary assets that are extreme and counter-
factual, and have repeatedly been shown in empirical work to yield misleading conclusions
about the role that money plays in the economy. The ML and NQ monetary aggregates
behave similarly to the Divisia aggregates. The fact that the functional aggregates track
closely with the Divisia aggregates is an important specification test, confirming that the
ML and NQ flexible functional forms that we used to approximate the unknown underlying
aggregator function are state of the art.
However, there are some differences between the ML, NQ, and Divisia monetary aggre-

gates at a small number of critical points in U.S. monetary history. In particular, the ML
and NQ aggregates show continuing rapid growth throughout the late 1970s; the Divisia
aggregates, by contrast, show marked deceleration well before Paul Volcker’s arrival at the
Fed. Also, growth in the functional aggregates moves sharply higher at the end of the “mon-
etarist experiment”in 1983 and 1984. The functional aggregates also exhibit faster growth
around 1995 than the Divisia aggregates do. Moreover, although growth in the ML, NQ,
and Divisia monetary aggregates fell sharply into negative territory in the aftermath of the
financial crisis and Great Recession of 2007-2009, suggesting a monetary explanation for
the low inflation and sluggish growth observed over that period, the ML aggregate shows a
more dramatic collapse; at the same time, the ML aggregate also shows exceptionally rapid
growth during the Great Recession. Finally, unlike the Divisia aggregates, both functional
aggregates show extremely rapid growth over the past couple of years.
Regarding these small differences between the ML, NQ, and Divisia monetary aggre-

gates, it is to be noted that the Divisia index is consistent with microeconomic theory and
aggregation theory, so long as economic agents are optimizing under perfect certainty and
the time series of prices and quantities are generated by a homothetic function. Under those
conditions, as a measure of the observed optimized service flow, the (chained) Divisia index
tracks the optimized value of the unknown aggregator function up to a very small third order
error in the log changes, and is superior to any estimated aggregator function having a finite
number of fixed parameters. However, as Samuelson and Swamy (1974, p. 592) conclude,
“empirical experience is abundant that the Santa Claus hypothesis of homotheticity in tastes
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and in technical change is quite unrealistic. Therefore, we must not be bemused by the un-
doubted elegances and richness of the homothetic theory. . . . we must accept the sad facts
of life, and be grateful for the more complicated procedures economic theory devises.”
With this in mind, in what follows we provide a comprehensive comparison between

the ML and NQ functional monetary aggregates and the Fed’s simple-sum M2 monetary
aggregate and the two broad statistical monetary aggregates from the Center for Financial
Stability, Divisia M3 and Divisia M4.

6 Business Cycle Analysis

In this section we use two dynamic general equilibrium monetary business models. The first
model is from Ireland (2004) and the second model is from Andrés et al. (2006). Both of
these articles find a minimal role of money in shaping business cycles.

6.1 The Ireland (2004) Model

This is a small dynamic general equilibrium monetary business model that incorporates
money balances in the IS and Phillips curve specifications of the Rotemberg (1982) and
Rotemberg and Woodford (1997) new Keynesian model. It is assumed that monopolistically
competitive firms face a quadratic cost of nominal price adjustment so that prices are sticky.
It is also assumed that a representative consumer maximizes expected utility by choosing
consumption, labor supply, and real money balances. Notably, the model allows real money
balances to enter the forward-looking IS and Phillips curve specifications. The model is
closed by adding a Taylor-type monetary policy rule. See Ireland (2004) for more details.
The first-order conditions describing the optimizing behavior of the representative house-

hold and intermediate goods-producing firm of the Ireland (2004) model can be approximated
by

ŷ = Etŷt+1 − ω1(r̂t − Etπ̂t+1)
+ω2(m̂t − êt − Etm̂t+1 + Etêt−1) + ω1(ât − Etât+1) (17)

m̂t = γ1ŷt − γ2r̂t + γ3êt (18)

π̂t = βEtπ̂t+1 + ψ

[
1

ω1
ŷt −

ω2
ω1

(m̂t − êt)− ẑt
]

(19)

log ât = ρa log ât−1 + εat (20)

log êt = ρe log êt−1 + εet (21)

log ẑt = ρz log ẑt−1 + εzt (22)

where yt is real output, mt is real money balances, rt is the gross nominal interest rate, πt is
the gross inflation rate, and the hatted variables are the percentage (logarithmic) deviations
from their steady-state values. β is the discount factor, at is a preference shock, et a money
demand shock, and zt a technology shock. It is assumed that εat ∼ N(0, σ2a), εet ∼ N(0, σ2e),
and εzt ∼ N(0, σ2z). Moreover, the following interest rate rule is added to close the model

r̂t = prr̂t−1 + pyŷt−1 + pππ̂t−1 + εrt (23)
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where εrt ∼ N(0, σ2r). There are two restrictions imposed on the parameters

γ1 =
(
r − 1 +

yrω2
m

) γ2
ω1

and
γ3 = 1− (r − 1)γ2

where r, y, π, and m are the steady-state values of the gross nominal interest, real output,
the gross inflation rate, and real money balances.
Ireland (2004) estimates (17)-(23) using U.S. quarterly data from 1980:1 to 2001:3. He

assumes that ω1 = 1 and ψ = 0.1, and calculates real per capita money balances by divid-
ing the Fed’s simple-sum M2 monetary aggregate by the product of the GDP deflator and
population. The role of money in this model is captured by ω2 in equation (18) which is the
forward-looking IS curve. This parameter also determines the impact of money on inflation
in equation (19) which is the forward-looking Phillips curve. Ireland (2004) estimates the
model using maximum likelihood estimation and finds that ω2 is essentially zero, suggest-
ing that real balances fail to enter into the IS and Phillips curve equations that govern the
dynamics of output and inflation.
While Ireland (2004) uses quarterly data from 1980:1 to 2001:3, the focus here on the

period from 1974:3 to 2018:1 allows for the use of more recent data over a period that
includes the global financial crisis and great recession and its aftermath. We obtain real per
capita GDP by dividing real GDP by the civilian noninstitutional population, we measure
the inflation rate using the GDP deflator, and use the federal funds rate and the shadow
federal funds rate from Wu and Xia (2016) for the interest rate. All the series are from the
Federal Reserve Bank of St. Louis FRED data base. Following Ireland (2004), we use a
linear trend to detrend the logs of per capita output and per capita real money balances.
We estimate (17)-(23), also imposing the two constraints, ω1 = 1 and ψ = 0.1, using

our quarterly ML and NQ functional monetary aggregates, which are already in real per
capita terms, since they are obtained from the estimation a demand system based on the
representative economic agent. For comparison purposes, we also report results with the
Fed’s Sum M2 aggregate and the CFS Divisia M3 and Divisia M4 aggregates. The maximum
likelihood parameter estimates are reported in Table 3. As can be seen, the results with the
Sum M2 monetary aggregate are almost the same as those reported by Ireland (2004); ω̂2
is very small (ω̂2 = 0.0006) and statistically insignificant (the standard error is 0.0005),
providing evidence for the version of the model in which real money balances are completely
absent from the IS and Phillips curve specifications. The results with the Divisia M3 and
Divisia M4 aggregates indicate that although ω̂2 is very small (ω̂2 = 0.0002 with a standard
error of 0.0000 with Divisia M3 and ω̂2 = 0.0001 with a standard error of 0.0001 with Divisia
M4), it is significantly different from zero, suggesting that movements in the broad Divisia
monetary aggregates have an effect on the dynamics of output and inflation.
However, our maximum likelihood estimates with the functional monetary aggregates,

ML and NQ, tell a very different story compared with Ireland (2004). We find that real money
balances could matter, since ω̂2 is relatively sizable with both the ML and NQ monetary
aggregates (ω̂2 = 0.0084 with the ML aggregate and ω̂2 = 0.0059 with the NQ aggregate),
even though they also have larger standard errors. This suggests that the presence of real
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money balances in the IS and Phillips curve specifications should be important in explaining
fluctuations in the data. We also find that the income elasticity, γ̂1, and interest semi-
elasticity of money demand, γ̂2, are small. Moreover, we find that the money shock, êt,
drives the dynamics of real money balances, m̂t, significantly since γ̂3 is quite large. The
estimates of the other parameters are consistent with those obtained by Ireland (2004).

6.2 The Andrés et al. (2006) Model

The Andrés et al. (2006) model is similar to the Ireland (2004) model. It consists of
a representative household, a continuum of producing firms, and a monetary authority.
It allows for habits in consumption and for non-separability among consumption and real
balances in preferences, as emphasized by Fuhrer (2000) and Christiano et al. (2005), making
it possible to test the relevance of a direct effect of money balances on supply and demand
decisions. It also assumes monopolistically competitive markets where a representative firm
sells its output and sets nominal prices on a staggered basis, as in Calvo (1983). The model
is closed assuming an augmented Taylor-type rule that the central bank uses to set the
nominal interest rate in response not only to the interest rate in the previous period and
to the inflation and output gaps, but also to money growth. Regarding the assumption
that money growth enters the Taylor rule, it should be noted that the original draft of
Ireland (2004), still available at https://www.nber.org/papers/w8115.pdf, also made this
same assumption, and also found a statistically significant response of the policy rate to
changes in money growth.
The log-linearized first-order conditions describing the optimizing behavior of the rep-

resentative household and intermediate goods-producing firm of the Andrés et al. (2006)
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model are

ŷt =
φ1

φ1 + φ2
ŷt−1 +

βφ1 + φ2
φ1 + φ2

Etŷt+1 −
1

φ1 + φ2
(r̂t − Etπt+1)−

βφ1
φ1 + φ2

Etŷt+2

+
ψ2
ψ1

1

1− βh
1

φ1 + φ2
(m̂t − êt)−

ψ2
ψ1

1

1− βh
1 + βh

φ1 + φ2
Et(m̂t+1 − êt+1)

+
ψ2
ψ1

1

βh

1 + βh

φ1 + φ2
Et(m̂t+2 − êt+2) +

1− βhρa
1− βh

1− ρa
φ1 + φ2

ât (24)

m̂t = γ1ŷt − γ2r̂t + [γ2(r − 1)(hφ2 − φ1)− hγ1] ŷt−1

−[γ2(r − 1)βφ1]Etŷt+1 +
ψ2
ψ1

(r − 1)βhγ2
1− βh Etm̂t+1

−(r − 1)βh(1− ρa)
1− βh γ2ât +

[
1− (r − 1)γ2

(
ψ2
ψ1

βhρe
1− βh + 1

)]
êt (25)

µ̂t = m̂t − m̂t−1 + π̂t (26)

π̂ = γfEtπ̂t+1 + γbπ̂t−1 + λm̂ct (27)

m̂ct = (χ+ φ2)ŷt − φ1ŷt−1 − βφ1Etŷt+1 −
ψ2
ψ1

1

1− βh(m̂t − êt)

+
ψ2
ψ1

βh

1− βhEt(m̂t+1 − êt+1)−
βh(1− ρa)

1− βh ât − (1 + χ)ẑt (28)

log ât = ρa log ât−1 + εat (29)

log êt = ρe log êt−1 + εet (30)

log ẑt = ρz log ẑt−1 + εzt, (31)

where h measures the habits in consumption.
The monetary policy rule considered by Andrés et al. (2006) is

r̂t = ρrr̂t−1 + (1− ρr)ρyŷt + (1− ρr)ρππ̂t + (1− ρr)ρµµ̂t + εrt (32)

where εrt ∼ N(0, σ2r). This policy rule is different from the one used by Ireland (2004),
since the monetary policymaker responds to the deviation of the money growth rate from its
steady-state value, µ̂t. We can certainly restrict ρµ = 0 for a conventional interest rule used
in the literature for the U.S. economy. However, we keep it in the estimation since we will be
able to test if ρµ = 0 is supported by the data. Moreover, Belongia and Ireland (2019) report
evidence that supports the inclusion of money in Taylor-type interest rate policy rules. In
this model, ψ2 is the key parameter, showing the impact of money balances on the economy,
and Andrés et al. (2006) find that ψ2 is zero using euro zone data and the simple-sum M3
monetary aggregate.
We estimate equations (24)-(32) using the same data we used to estimate the Ireland

(2004) model in the previous section. In doing so, we calibrate β to 0.99 which matches the
value used in the literature. We follow Andrés et al. (2006) and also impose the constraints
γf = β and γb = 1 − γf , since γb is close to zero when the model is estimated without
any restrictions. We present the maximum likelihood parameter estimates in Table 4, in the
same fashion as those in Table 3 with the Ireland (2004) model.
As can be seen, the null hypothesis that ψ̂2 = 0 is rejected with all the monetary ag-

gregates, except for Sum M2, with the margins of rejection being higher with the ML and
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NQ aggregates than with the Divisia M3 and Divisia M4 aggregates. The ψ2 parameter
governs the separability of the utility function on real balances, and in contrast to Andrés
et al. (2006) and also Ireland (2004) we find that the real balances effect in the dynamics of
output and inflation is significantly different from zero. Regarding the ρµ parameter, we find
that it is statistically significant and different from zero with all the monetary aggregates,
indicating a significant response of the interest rate to the money growth rate. As Andrés et
al. (2006, p. 467) put it, “this effect is less common in the literature and opens up a channel
of influence of money balances that may be potentially important.”
As regards the other parameters of interest, as in Andrés et al. (2006) we find evidence

of habit formation, as the h parameter is high and statistically significant. The elasticity of
money demand with respect to output, γ1, is close to 1 with the ML and NQ aggregates,
around 0.7 with the Divisia M3 and Divisia M4 aggregates, and close to zero with the Sum
M2 aggregate. Finally, the elasticity of money demand with respect to the interest rate,
γ2, is close to zero with the ML and NQ aggregates and the Divisia M3 and Divisia M4
aggregates, but it is above 1 with the Sum M2 aggregate, very much in line with the value
obtained by Ireland (2004).

7 Granger Causality

In this section we test for Granger causality from the ML and NQ functional monetary
aggregates to industrial production. We also provide a comparison with the Fed’s simple-
sum M2 monetary aggregate and the CFS Divisia M3 and Divisia M4 monetary aggregates.
We carry out the investigation in the context of the standard VAR approach – see Stock
and Watson (1989) , Bernanke and Blinder (1992), Swanson (1998), Belongia and Ireland
(2015), and Dery and Serletis (2020), among others. However, we also use an alternative
approach that addresses the nonlinearity in the time series, since (as it has already been
noted in the literature) the money-output relationship may not be stable over the business
cycle.

7.1 The Conventional Approach

We assume that the relevant information is contained in the present and past values of the
variables and use the following trivariate autoregressive representation

∆yt = α +

p∑
i=1

βi∆yt−i +

q∑
j=1

θj∆mt−j +

r∑
k=1

λkπt−k + et

where ∆yt is the first difference of logged output, ∆mt the first difference of logged money,
and πt is the inflation rate (a conditioning variable). We test for Granger causality in the
context of a flexible lag structure optimally chosen by the Akaike information criterion (AIC)
after letting each of p, q, and r take values from 1 to 12. Also, we test for Granger causality
over the full sample, from 1974 to 2018, and three subsamples: (a) the period of the Great
Inflation through the Volcker disinflation, 1974-1985, (b) the period of the Great Moderation,
1986-1999, and (c) the period of the crisis, Great Recession, and zero nominal interest rates,
2000-present.
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We report the Granger causality test results for each monetary aggregate and for each
sample period in Table 5. Each entry in the table represents the marginal significance level
of the test statistic testing the null hypothesis that all lags of the monetary growth rate,
∆mt, can be excluded from the regression; that is θj = 0, ∀ j. Therefore, smaller p-values
indicate a stronger role for money. As can be seen in Table 5, the Sum M2 monetary
aggregate has no predictive power at all for economic growth, both over the full sample and
the subsamples, confirming that the simple-sum aggregates deliver different and misleading
information about monetary policy and the effects it is having on the economy. The Divisia
M3 and Divisia M4 aggregates perform well over the full sample and the first subsample,
from 1974 to 1985, but their predictive power diminishes in data from the post-1985 period.
The ML and NQ functional monetary aggregates Granger cause real output in all cases
and their predictive power does not diminish in the post-1985 period, except for the ML
aggregate over the third sabsample, from 2000 to 2018. Our conclusion from these tests is
that the functional monetary aggregates are more informative for predicting real economic
activity.

7.2 Markov Switching Granger Causality

In this section we use the Psaradakis et al. (2005) Markov-switching bivariate VARmodel (in
logged differences) with time-varying parameters, (with parameter time-variation directly)
reflecting changes in the causal relation between money and output.1 In doing so, we treat
changes in causality as random events, governed by an unobserved variable which follows a
homogeneous Markov chain with four states, governing the money-output relationship over
time. That is, we substitute the notion of permanent causality with a notion of temporary
causality (causality holding during some periods but not in others).
In particular, following Psaradakis et al. (2005), we use the following Markov switching

bivariate VAR model(
∆yt
∆mt

)
= Cst +

q∑
i=1

Ai,st

(
∆yt−i
∆mt−i

)
+

r∑
i=1

Bi,stπt−i + ut,st, ut,st ∼ N(0,Σst)

where ∆yt is the first difference of logged output, ∆mt the first difference of logged money, πt
the inflation rate (a ‘conditioning’variable), and st is an unobserved variable which follows a
homogeneous Markov chain with four states. The transition between the states is controlled
by the transition matrix

Π =

 p11 · · · p14
...

. . .
...

p41 · · · p44


where pji = P [zt = j |zt−1 = i], i, j = 1, ...,m, and pji = 1 −

∑
k 6=j pki is the probability of

state j in period t given that the system was in state i in period t− 1.

1Rothman et al. (2001) also take a similar approach to the investigation of the nonlinear causality
relationship between money and output, but in the context of a smooth-transition model.
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The parameters in the Cst , Ai,st, and Bi,st matrices change with changes in st. We
impose the following restrictions to help us identify the money-output relationship over time

Ai,st =

[
ai,11,st=1 ai,12,st=1
ai,21,st=1 ai,22,st=1

]
, if st = 1

Ai,st =

[
ai,11,st=2 0
ai,21,st=2 ai,22,st=2

]
, if st = 2

Ai,st =

[
ai,11,st=3 ai,12,st=3

0 ai,22,st=3

]
, if st = 3

Ai,st =

[
ai,11,st=4 0

0 ai,22,st=4

]
, if st = 4.

That is, the specification of the model allows for four alternative states of nature. In the
first state, money is Granger-causal for output (ai,12,st=1 6= 0) and output is Granger-causal
for money (ai,21,st=1 6= 0). In the second state, money is not Granger-causal for output
(ai,12,st=2 = 0), but output is Granger-causal for money (ai,21,st=2 6= 0). In the third state,
money is Granger-causal for output (ai,12,st=3 6= 0) but output is not Granger-causal for
money (ai,21,st=3 = 0). Finally, in the fourth state, there is no Granger causality between
money and output (ai,12,st=4 = 0 and ai,21,st=4 = 0).
We use monthly data for the United States, over the period from June 1974 to May 2018,

and estimate the model following Hamilton (1994). We use the industrial production index
as a proxy for real output and for the money supply we use the ML and NQ functional
monetary aggregates (after we multiply by population and the consumer price index to get
the aggregate quantity of money) as well as the Fed’s SumM2 aggregate and the CFS Divisia
M3 and Divisia M4 aggregates, for comparison purposes. We choose the VAR lag length
specification based on the AIC criterion, and calculate the filtered probabilities that money
causes output from the consolidated state where money causes output

p(st = 1|Ωt) + p(st = 3|Ωt) = p(money is Granger causal for output |Ωt )

where Ωt is the information set at time period t.
We report the filtered probabilities that money causes output in Figures 5-9 for the ML

and NQ functional monetary aggregates, the Sum M2 aggregate, and the Divisia M3 and
Divisia M4 aggregates, respectively. As can be seen in the figures, the switching between the
two consolidated states is generally observed during economic contractions such as the 2007-
2009 global financial crisis. Moreover, Figures 5 and 6 show that the functional monetary
aggregates (and to a larger extent the NQ monetary aggregate) cause real output most of
the time since the 1980s. Finally, based on this methodology, the Fed’s Sum M2 aggregate
and the CFS Divisia M3 and Divisia M4 aggregates do not seem to be good predictors of
the dynamics of output most of the time.
We conclude that the functional monetary aggregates are better for predicting real eco-

nomic activity, but this may not be the case for other uses of monetary aggregates.
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8 Conclusion

As Belongia (1996, p. 1082) put it, “simple-sum monetary aggregates can be constructed
in a relatively straightforward manner, but they have no basis in either economic or index
number theory. Divisia monetary aggregates on the other hand, require more care in con-
struction but are solidly based in theory.”The approach in this paper is based on the use of
neoclassical microeconomic and aggregation theory to produce functional monetary aggre-
gates, encompassing the full range of monetary assets. This approach requires more care,
because it involves the estimation of highly disaggregated monetary asset demand systems,
without making any restrictive separability assumptions to restrict the dimension of the pa-
rameter space. This was not possible a few years ago, which explains why earlier work in
this area has generally been carried out in the context of small, highly aggregated monetary
asset demand systems, and the computation of monetary quantity indexes relied exclusively
on statistical index number theory.
We build on recent advances in microeconometrics and the increase in computational

power that allow the estimation of very detailed demand systems. We use two of the most
popular, effectively globally regular flexible functional forms, the minflex Laurent and the
normalized quadratic. We address the issue of optimal monetary aggregation (by including
the full range of monetary assets), as well as the problems of dimensionality and nonlinearity,
estimating very detailed demand systems, treating the curvature property as a maintained
hypothesis. Our broad ML and NQ functional monetary aggregates are consistent with
neoclassical microeconomic theory and aggregation theory. Our detailed statistical analysis
favors the functional monetary aggregates over the statistical monetary aggregates (the Fed’s
Sum M2 and the CFS Divisia M3 and Divisia M4 monetary aggregates).
We believe that our approach will prove useful in computing monetary quantity indexes,

understanding the effects of potential monetary policy actions, and restoring a meaningful
role for money within dynamic stochastic general equilibrium frameworks. However, we
would also like to reiterate an important point made earlier. In particular, a potential
advantage of the Divisia aggregates over the functional aggregates is that the index numbers
can be constructed in real time and would not have to be revised as the estimated parameters
of the ML and NQ aggregates change over time. In future work, we plan to explore the
statistical stability of the ML and NQ parameter estimates. If these parameters are found
to be largely stable over time, that would dispel one potential concern about the functional
approach to monetary aggregation.
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Table 1. Components and monetary aggregates in the United States

Monetary Aggregates
Federal Reserve Center for Financial Stability, Divisia

Mnemonic Liquid asset Sum M1 Sum M2 M1 M2M MZM M2 ALL M3 M4- M4

1 Transaction balances
√ √ √ √ √ √ √ √ √ √

Currency
Travelers’ checks
Demand deposits

2 OCDs at commercial banks
√ √ √ √ √ √ √ √ √ √

3 OCDs at thrifts institutions
√ √ √ √ √ √ √ √ √ √

4 Saving deposits at banks including MMDAs
√ √ √ √ √ √ √ √

5 Saving deposits at thrifts including MMDAs
√ √ √ √ √ √ √ √

6 Retail money-market funds
√ √ √ √ √ √ √ √

7 Small time deposits at commercial banks
√ √ √ √ √ √

8 Small time deposits at thrift institutions
√ √ √ √ √ √

9 Institutional money-market funds
√ √ √ √ √

10 Large time deposits
√ √ √

11 Repurchase Agreements
√ √ √

12 Commercial paper
√ √

13 T-bills
√



Table 2. Symmetric autocorrelation matrix

A. ML demand system

ρ̂ =



0.9171
−0.0760 0.9166
−0.0765 −0.0765 0.9223
−0.0768 −0.0768 −0.0773 0.9258
−0.0760 −0.0760 −0.0765 −0.0768 0.9170
−0.0760 −0.0760 −0.0765 −0.0768 −0.0760 0.9167
−0.0768 −0.0768 −0.0773 −0.0776 −0.0768 −0.0768 0.9258
−0.0767 −0.0767 −0.0772 −0.0775 −0.0767 −0.0767 −0.0775 0.9247
−0.0769 −0.0769 −0.0774 −0.0777 −0.0769 −0.0769 −0.0777 −0.0776 0.9269
−0.0764 −0.0764 −0.0769 −0.0772 −0.0764 −0.0764 −0.0772 −0.0771 −0.0773 0.9211
−0.0761 −0.0761 −0.0766 −0.0769 −0.0761 −0.0761 −0.0769 −0.0768 −0.0770 −0.0765 0.9179
−0.0763 −0.0763 −0.0768 −0.0771 −0.0763 −0.0763 −0.0771 −0.0770 −0.0772 −0.0767 −0.0764 0.9203
−0.0764 −0.0763 −0.0768 −0.0772 −0.0764 −0.0763 −0.0772 −0.0771 −0.0773 −0.0767 −0.0764 −0.0767 0.9207



B. NQ demand system

ρ̂ =



0.9172
−0.0768 0.9279
−0.0762 −0.0772 0.9215
−0.0767 −0.0777 −0.0771 0.9269
−0.0761 −0.0771 −0.0765 −0.0770 0.9200
−0.0766 −0.0755 −0.0769 −0.0774 −0.0768 0.9253
−0.0767 −0.0777 −0.0771 −0.0776 −0.0770 −0.0775 0.9274
−0.0763 −0.0773 −0.0767 −0.0772 −0.0766 −0.0770 −0.0772 0.9226
−0.0767 −0.0777 −0.0771 −0.0776 −0.0770 −0.0775 −0.0777 −0.0772 0.9273
−0.0765 −0.0775 −0.0769 −0.0774 −0.0767 −0.0772 −0.0774 −0.0770 −0.0774 0.9244
−0.0763 −0.0772 −0.0766 −0.0771 −0.0765 −0.0770 −0.0772 −0.0768 −0.0772 −0.0769 0.9220
−0.0763 −0.0773 −0.0767 −0.0772 −0.766 −0.0771 −0.0772 −0.0768 −0.0772 −0.0770 −0.0768 0.9227
−0.0760 −0.0770 −0.0764 −0.0769 −0.0762 −0.0767 −0.0769 −0.0764 −0.0769 −0.0766 −0.0764 −0.0765 0.9191
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Table 3. Parameter estimates of the Ireland (2004) model

Monetary aggregate
Functional monetary aggregates Statistical monetary aggregates

Parameter ML NQ Sum M2 Divisia M3 Divisia M4

ω2 0.0084 (0.0165) 0.0059 (0.6147) 0.0006 (0.0005) 0.0002 (0.0000) 0.0001 (0.0001)
γ1 0.2040 (0.8802) 0.3422 (0.3409) 0.1194 (0.2237) 0.0149 (0.8904) 0.2870 (0.7246)
γ2 0.0552 (0.1247) 0.1293 (0.2726) 0.8694 (0.2882) 1.2305 (0.3979) 1.1024 (0.3861)
γ3 0.9993 (0.0016) 0.9984 (0.0033) 0.9894 (0.0035) 0.9850 (0.0049) 0.9865 (0.0047)
ρr 0.7703 (0.0222) 0.7703 (0.0224) 0.7704 (0.0219) 0.7704 (0.0195) 0.7704 (0.0219)
ρy 0.0154 (0.0045) 0.0154 (0.0042) 0.0153 (0.0043) 0.0153 (0.0051) 0.0153 (0.0043)
ρπ 0.4225 (0.0349) 0.4225 (0.0294) 0.4224 (0.0332) 0.4224 (0.0302) 0.4224 (0.0323)
ρa 0.9558 (0.0154) 0.9558 (0.0155) 0.9558 (0.0161) 0.9958 (0.0153) 0.9558 (0.0149)
ρe 0.9743 (0.0160) 0.9874 (0.0116) 0.9963 (0.0040) 0.9983 (0.0024) 0.9974 (0.0043)
ρz 0.9903 (0.0108) 0.9903 (0.0100) 0.9904 (0.0094) 0.9904 (0.0107) 0.9904 (0.0108)
σa 0.0399 (0.0098) 0.0399 (0.0107) 0.0399 (0.0112) 0.0399 (0.0113) 0.0399 (0.0097)
σe 0.0190 (0.0010) 0.0146 (0.0008) 0.0087 (0.0004) 0.0112 (0.0006) 0.0108 (0.0006)
σz 0.0092 (0.0006) 0.0092 (0.0006) 0.0092 (0.0005) 0.0092 (0.0006) 0.0092 (0.0006)
σr 0.0028 (0.0002) 0.0028 (0.0002) 0.0028 (0.0002) 0.0028 (0.0002) 0.0028 (0.0002)

Notes: Numbers in parentheses are standard errors.



Table 4. Parameter estimates of the Andrés et al. (2006) model

Monetary aggregate
Functional monetary aggregates Statistical monetary aggregates

Parameter ML NQ Sum M2 Divisia M3 Divisia M4

ψ1 0.0096 (0.0001) 0.0086 (0.0000) 0.8918 (0.0518) 0.0167 (0.0001) 0.0166 (0.0000)
ψ2 1.3245 (0.0020) 1.3120 (0.0000) 0.0000 1.7728 (0.0048) 1.7986 (0.0047)
h 0.7109 (0.0025) 0.7299 (0.0003) 0.9682 (0.0180) 0.7929 (0.0008) 0.7904 (0.0002)
γ1 0.8972 (0.0050) 0.9329 (0.0062) 0.0177 (0.0018) 0.7289 (0.0045) 0.7184 (0.0028)
γ2 0.0166 (0.0000) 0.0288 (0.0000) 1.2902 (0.1551) 0.0141 (0.0000) 0.0139 (0.0000)
χ 2.4173 (0.0027) 2.6287 (0.0008) 2.6250 (0.8198) 2.6295 (0.0004) 2.6247 (0.0022)
λ 0.6805 (0.0141) 0.8132 (0.0001) 0.0520 (0.0220) 0.1011 (0.0013) 0.1020 (0.0021)
ρr 0.6547 (0.0105) 0.5906 (0.0001) 0.7847 (0.0250) 0.7841 (0.0138) 0.7802 (0.0103)
ρy 0.0244 (0.0001) 0.1182 (0.0000) 0.1215 (0.0240) 0.0397 (0.0002) 0.0373 (0.0026)
ρπ 2.3182 (0.1057) 1.2682 (0.0003) 1.8480 (0.1935) 1.9453 (0.0101) 1.9308 (0.0009)
ρµ 0.1305 (0.0078) 0.1915 (0.0001) 0.5767 (0.1415) 0.1855 (0.0023) 0.1760 (0.0038)
ρa 0.9872 (0.0032) 0.9841 (0.0005) 0.9446 (0.0258) 0.9723 (0.0038) 0.9752 (0.0048)
ρe 0.9792 (0.0097) 0.9725 (0.0007) 0.9965 (0.0038) 0.9963 (0.0035) 0.9925 (0.0070)
ρz 0.8296 (0.0092) 0.8490 (0.0064) 0.9791 (0.0164) 0.9765 (0.0041) 0.9760 (0.0034)
σa 0.1946 (0.0814) 0.1364 (0.0115) 0.0274 (0.0185) 0.0540 (0.0083) 0.0593 (0.0110)
σe 0.0199 (0.0011) 0.0157 (0.0005) 0.0092 (0.0005) 0.0115 (0.0006) 0.0114 (0.0006)
σz 0.0229 (0.0017) 0.0284 (0.0014) 0.0082 (0.0011) 0.0014 (0.0001) 0.0014 (0.0002)
σr 0.0039 (0.0002) 0.0037 (0.0001) 0.0029 (0.0002) 0.0027 (0.0002) 0.0027 (0.0001)

Notes: Numbers in parentheses are standard errors. Unavailable standard error suggests that the non-negativity constraint binds.



Table 5. Granger causality tests

Monetary aggregate AIC optimal lag Statistic (p-value)

A. 1974-2018

ML (12,3,4) 9.7715 (0.0001)
NQ (7,10,4) 4.2285 (0.0000)
Sum M2 (12,1,2) 0.0002 (0.9889)
Divisia M3 (12,2,2) 8.8571 (0.0002)
Divisia M4 (12,6,5) 3.7818 (0.0011)

B. 1974-1985

ML (1,12,5) 2.2857 (0.0125)
NQ (1,12,5) 2.5520 (0.0053))
Sum M2 (1,12,5) 1.1565 (0.3239)
Divisia M3 (12,3,5) 4.2496 (0.0071)
Divisia M4 (5,1,12) 13.2275 (0.0004)

C. 1986-1999

ML (3,4,2) 3.3854 (0.0109)
NQ (3,4,2) 3.0913 (0.0175)
Sum M2 (3,1,2) 0.2493 (0.6182))
Divisia M3 (3,1,2) 1.1315 (0.2890)
Divisia M4 (3,3,2) 1.5731 (0.1980)

D. 2000-2018

ML (7,1,10) 0.6894 (0.4073)
NQ (4,5,1) 3.8484 (0.0023)
Sum M2 (7,1,10) 0.3566 (0.5511)
Divisia M3 (7,1,10) 0.0162 (0.8990)
Divisia M4 (7,1,10) 0.0098 (0.9211)

Note: Numbers in parentheses are p-values.
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