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Abstract:

How similar is the price behavior of oil, natural gas, and coal? Are there any interactions
among these three fuel prices and their volatilities? Using the Yatchew and Dimitropoulos
(2015) annual data for the United States, over the period from 1870 to 2014, and state-of-
the-art econometric methodology, we explore for spillovers and interactions among the three
energy markets. In doing so, we use a range of univariate and multivariate volatility models.
The key contribution to the literature is the estimation of a trivariate BEKK model that
allows for the interdependence of oil, natural gas, and coal returns and volatilities, using the
longest span prices that have ever been studied before.

JEL classi�cation: E32, C32.
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1 Introduction

In recent years, multivariate volatility models are becoming standard in economics and �-
nance. These models, �rst proposed by Bollerslev et al. (1988), allow for rich dynamics
in the variance-covariance structure of time series, making it possible to model spillovers in
both the values and the conditional variances of the series under study. They can be used to
investigate a large number of issues in economics and �nance. For example, as Bauwens et
al. (2006, p. 79) put it, �is the volatility of a market leading the volatility of other markets?
Is the volatility of an asset transmitted to another asset directly (through its conditional
variance) or indirectly (through its conditional covariances)? Does a shock on a market
increase the volatility on another market, and by how much? Is the impact the same for
negative and positive shocks of the same amplitude?�
In this paper we estimate univariate and multivariate volatility models for the prices of

three hydrocarbons � oil, natural gas, and coal � using the Yatchew and Dimitropoulos
(2015) annual data for the United States that span over a century, from 1870 to 2014. The key
contribution to the literature is the estimation of a trivariate volatility model that explores
the interdependence of oil, natural gas, and coal prices and volatilities, using the longest span
data that have ever been studied before. Existing studies have used multivariate volatility
models to explore the relationships among several electricity markets [see Worthington et
al. (2005)], between oil and natural gas markets [see Ewing et al. (2002) and Serletis and
Shahmoradi (2006)], and between oil markets and �nancial or macroeconomic indicators [see
Lee et al. (1995), Sadorsky (2012), Elder and Serletis (2010), and Rahman and Serletis
(2012)]. However, to the best of our knowledge, no study has used multivariate volatility
models to model oil, natural gas, and coal prices in a systems context, although there is
similar work by E�mova and Serletis (2014) who model crude oil, natural gas, and electricity
prices using daily data for the United States over a short period, from 2001 to 2013.
Our research is distinguished from the current literature in a number of ways. The present

paper is signi�cantly di¤erent from E�mova and Serletis (2014), and even though our research
question is similar to Ewing et al. (2002), who discuss the volatility transmission in the oil
and natural gas markets, our empirical models have more features. We use a long span, low
frequency data set, over the period from 1870 to 2014, and model the returns of oil, natural
gas, and coal which are all raw non-renewable energy resources and are the main utilized fuels
for energy worldwide. Although temporally aggregated data exhibit smaller GARCH e¤ects
than higher frequency data, since the persistence of conditional volatility tends to increase
with the sampling frequency, we �t the univariate and multivariate volatility models to the
low frequency data. Also, there is no simple method which links the presented ARCH and
GARCH e¤ects to the estimation results at higher frequencies � see Drost and Nijman
(1993), Hafner (2008), and Zivot (2009) for more details regarding these issues.
This paper is also signi�cantly di¤erent from E�mova and Serletis (2014). Their work

uses daily data (over the period from January 2, 2001 to April 26, 2013) and focuses on two
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primary forms of energy (oil and natural gas) and an energy carrier (electricity), produced
using these two primary energy sources. In this paper we derive univariate forecasting model
speci�cations for three primary energy sources � oil, natural gas, and coal � based on annual
time series data. We also model and investigate the spillovers and interactions among the
three primary energy sources using the longest span annual price series (from 1870 to 2014)
that have ever been studied before. Forecasts of hydrocarbons prices and estimates of the
spillovers and interactions among the hydrocarbons markets a¤ect the economic outlook of
the country, guiding the development of natural resources and investments in infrastructure.
They also play an important role in �rm investment and production. Users of hydrocarbons
price forecasts and estimates of spillovers and interactions among the hydrocarbons markets
include governments, central banks, international organizations, and a range of industries in
the broad areas of manufacturing, mining, and utilities.
We focus on the price of crude oil, although oil is not consumed directly but is used as

a factor of production in the re�ning industry (in the production of gasoline, diesel, heating
oil, and jet fuel). We are interested in the interaction between the oil market and the coal
market, because even before the emergence of a global oil market in the 1970s, there was a
well developed market for coal. In fact, coal was the primary fuel in shipping until the 1920s
and in railroading and home heating until the 1950s. We are also interested in the interaction
between the oil and coal markets and the natural gas market, because natural gas competes
with coal in producing electricity and in the manufacturing of chemicals and metals. In 2011,
for example, 35.3% of the U.S. energy was generated by oil, while natural gas contributed
24.8%, and coal contributed 19.7%. These fuels exhibit some degree of substitutability and
their prices are closely correlated, suggesting that we model interactions among the di¤erent
markets in a systems context. See Kilian (2015) for more details regarding a historical
perspective of the evolution of the oil, coal, and natural gas markets in the United States.
The outline of the paper is as follows. In Section 2 we present the Yatchew and Dim-

itropoulos (2015) price data on the three hydrocarbons and investigate their time series
properties using unit root and stationarity tests. In Section 3 we present two alternative
formulations of univariate volatility models for each fuel return and in Section 4 we estimate
a trivariate volatility model that explores the interdependence of oil, natural gas, and coal
returns and volatilities. The �nal section brie�y concludes the paper.

2 Data and Basic Facts

We use the Yatchew and Dimitropoulos (2015) annual data on oil and coal for the period
from 1870 to 2014 and for natural gas for the period from 1919 to 2014. It is the same data
that Yatchew and Dimitropoulos (2015) use and were obtained from Manthy (1978) prior to
1973 and augmented using prices published by the U.S. Energy Information Administration
from 1973 to 2014. See Yatchew and Dimitropoulos (2015) for more details regarding the
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fuels data.
Figures 1 to 3 plot the natural logs of the oil, natural gas, and coal prices, and their

returns, respectively. The oil price is dollars per barrel, the natural gas price is cents per
1000 cubic feet, and the coal price is dollars per ton. Table 1 presents summary statistics
for the log levels, ln ot, ln gt, ln ct, and the �rst di¤erences of the logs, � ln ot, � ln gt, and
� ln ct, of the three price series. In general, the p-values for skewness and kurtosis point to
signi�cant deviations from symmetry and normality with both the logged series and the �rst
di¤erences of the logs. In fact, the Jarque-Bera (1980) test statistic, distributed as a �2(2)
under the null hypothesis of normality, rejects the null hypothesis.
One interesting feature of the data is the contemporaneous correlation between the dif-

ferent prices series. These correlations are reported in Table 2 for log levels (in panel A) and
for �rst di¤erences of log levels (in panel B). To determine whether these correlations are
statistically signi�cant, Pindyck and Rotemberg (1990) is followed and a likelihood ratio test
of the hypotheses that the correlation matrices are equal to the identity matrix is performed.
The test statistic is

�2 ln
�
jRjN=2

�
where jRj is the determinant of the correlation matrix and N is the number of observations.
This test statistic is distributed as �2 with 0:5q(q � 1) degrees of freedom, where q is the
number of series. The test statistic is 724:811 with a p-value of 0:000 for the logged prices
and 74:145 with a p-value of 0:000 for the �rst di¤erences of the logs. Clearly, the hypothesis
that these price series are uncorrelated is rejected. Notice, however, that the correlations
indicate a weak relationship between the natural gas and coal price series. The correlation
patterns documented in Table 2 manifest in the graphical representation of the logged levels
of the series in Figure 4.
The �rst step in volatility modelling and the examination of trends in a set of variables is

to test for the presence of a stochastic trend (a unit root) in the autoregressive representation
of each individual series. Nelson and Plosser (1982) argue that most macroeconomic and
�nancial time series have a unit root (a stochastic trend), and describe this property as one
of being �di¤erence stationary�so that the �rst di¤erence of a time series is stationary. An
alternative �trend stationary�model has been found to be less appropriate.
We conduct a battery of unit root and stationary tests in panel A of Table 3 in the

natural logs of each price series. In particular, we use the Augmented Dickey-Fuller (ADF)
test [see Dickey and Fuller (1981)] and the Dickey-Fuller GLS test [see Elliot, Rothenberg,
and Stock (1996)], assuming both a constant and trend, to determine whether the series
have a unit root. The optimal lag length is taken to be the order selected by the Bayesian
information criterion (BIC), after we assume a maximum lag length of 4 for each series.
Moreover, given that unit root tests have low power against trend stationary alternatives,
we also use the KPSS test [see Kwiatkowski et al. (1992)] to test the null hypothesis of
stationarity around a trend. As shown in panel A of Table 3, the null hypothesis of a unit
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root cannot in general be rejected at conventional signi�cance levels by both the ADF and
DF-GLS test statistics. Moreover, the null hypothesis of trend stationarity can be rejected
at conventional signi�cance levels by the �̂� KPSS test.1 We thus conclude that each of the
three fuel prices is nonstationary, or integrated of order one, I(1). In panel B of Table 3 we
repeat the unit root and stationarity tests using the �rst di¤erences of the logarithms of the
series. The null hypotheses of the ADF and DF-GLS tests are in general rejected and the
null hypothesis of the KPSS test cannot be rejected, suggesting that the �rst di¤erences of
the logarithms of the series are stationary, or integrated of order zero, I(0).
Due to the presence of unit roots in the logged levels, in the next section we estimate all

univariate volatility models using the �rst di¤erences of the logarithms of the series, � ln ot,
� ln gt, and � ln ct. Therefore, we actually model each fuel return in the univariate volatility
models.

3 Univariate Volatility Modelling

This section presents a range of univariate GARCH models for oil, natural gas, and coal re-
turns. As E�mova and Serletis (2014, pp. 265) put it, �univariate GARCH models have been
neglected by academic research in recent years despite their strong performance. Moreover,
univariate models produce accurate forecasts, converge much faster in maximum likelihood
estimation, and allow for the inclusion of a signi�cant number of additional parameters
whereas multivariate systems quickly become overparameterized.�

3.1 Oil

In this section, we estimate two GARCH (1,1) models that di¤er in their mean equations to
model the annual oil return. The �rst mean equation is a random walk with drift

� ln ot = �0 + "t (1)

where� ln ot is the �rst di¤erence of the logarithm of the oil price. The number of autoregres-
sive (and moving-average) terms in equation (1) was chosen using the Bayesian Information
Criterion (BIC). The second mean model is equation (1) augmented with a GARCH-in-Mean
term, as follows

� ln ot = �0 + �1ht + "t (2)

where ht is the time-varying variance of the oil return.

1It should be noted that the KPSS test has limitations, as there are size distortions from the number
of observations and the persistence of the data. For example, some data tend to be persistent even when
they are actually stationary, and the KPSS test may reject the null of stationarity under this circumstance.
In this regard, Caner and Kilian (2001) suggest that monthly and quarterly data based on small samples
mainly su¤er from this issue.
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We use a GARCH (1,1) speci�cation for the variance equation and also include the
GJR asymmetry coe¢ cient of Glosten et al. (1993), "2t�1 � I"<0("t�1), which captures the
disproportionate response of a commodity�s variance to unexpected return decreases. The
resulting variance equation is

ht = c0 + a1"
2
t�1 + b1ht�1 + d1"

2
t�1I"<0("t�1). (3)

The empirical estimates for both models, equations (1) and (3) and equations (2) and
(3), using the annual data from 1870 to 2014, are presented in panels A and B of Table 4.
The estimation is performed in RATS 8.3. The GARCH-in-Mean coe¢ cient in the extended
oil return equation (2) is large and statistically signi�cant, suggesting that current oil return
volatility has a signi�cant impact on the direction or magnitude of the oil return. Moreover,
since the two GARCH models (the baseline and extended) are nested, their log-likelihood
values are directly comparable. We �nd that the extended model, equations (2) and (3), has
a higher log-likelihood value than the baseline model, equations (1) and (3).
The most striking �nding from the variance equation in panel B of Table 4 is the contrast

of very high ARCH coe¢ cient on "2t�1 and a moderate GARCH coe¢ cient on ht�1. This
suggests that volatility reacts intensely to oil return movements, but shocks to the conditional
variance die out quickly, thus rendering volatility spiky. Moreover, we �nd negative and
statistically signi�cant asymmetric e¤ects (�0:780 with a p-value of 0:011).
Additionally, in panel C of Table 4 we report the log-likelihood values and diagnostic test

statistics for the standardized residuals, "̂t = "t=
p
ht, including descriptive statistics, the

Jarque-Bera statistic, the Ljung-Box Q test for residual autocorrelation, and the McLeod-Li
Q2 test for squared residual autocorrelation. Both tests assume the null hypothesis that the
data are independently distributed, and an alternative hypothesis of autocorrelation. The
Q and Q2 statistics are reported for 10 lags, with p-values in parentheses. The Ljung-Box
and McLeod-Li tests pass at conventional signi�cance levels, suggesting that there is no
signi�cant evidence of autocorrelation in the levels or squares of the standardized residuals.
Finally, in panel D of Table 4 we present two structural break tests for each of the base-

line and extended models. In part, this is related to the treatment of the data as having
been governed by a single process over the course of one hundred years � a span over which
energy markets in the United States (and globally) have undergone very signi�cant struc-
tural changes due to technological innovation, revisions in regulatory regimes and market
structures, the emergence of new players such as OPEC, and changes in the sources of sup-
ply and demand. We perform the Andrews and Ploberger (1994) and the Andrews-Quandt
structural break tests for a single structural break at an unknown point within the sample.
In particular, we generate a series of LM statistics at each of the points in the middle range
of the data set, and use the maximum of the LM statistics as the test statistic in the case
of the Andrews-Quandt test and the geometric mean of the LM statistics in the case of the
Andrews and Ploberger (1994) test. According to the results in panel D of Table 4 (based on
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asymptotic p-values computed as in Hansen (1997), the baseline model suggests a structural
break in 1972, very close to the �rst oil crisis in 1973. However, this break is highly insignif-
icant. Moreover, the structural break in the extended crude oil model is not signi�cant as
well. Therefore, we conclude that our model speci�cations �t the series of oil returns very
well without a structural break, suggesting that the assumption of a single data generation
process over this time-frame is a good one to make.

3.2 Natural Gas

Like in the previous subsection, we estimate two univariate GARCH (1,1) models of natural
gas returns which again di¤er only in their mean equations. The �rst model uses the following
baseline MA (3) mean equation

� ln gt = �0 + �1"t�1 + �2"t�2 + �3"t�3 + "t (4)

where � ln gt is the �rst di¤erence of the logarithm of the natural gas price. Again, the
number of (AR and) MA terms in (4) was chosen using the Bayesian Information Criterion.
The second model for the mean equation is a MA (3) model augmented with a GARCH-in-
Mean term

� ln gt = �0 + �1"t�1 + �2"t�2 + �3"t�3 + �4ht + "t (5)

where ht now denotes the time-varying variance of the natural gas return.
We use the same GARCH (1,1) variance speci�cation as we did for oil

ht = c0 + a1"
2
t�1 + b1ht�1 + d1"

2
t�1I"<0("t�1). (6)

Empirical estimates for models (4) and (6) and (5) and (6), using the annual data from
1919 to 2014, are presented in Table 5, in the same fashion as those for oil in Table 4. Basically
we get consistent estimates across the baseline and the extended model. The MA coe¢ cients
are all positive and statistically signi�cant. Moreover, the GARCH-in-Mean coe¢ cient in the
extended natural gas return equation (5) is positive and statistically signi�cant (1:698 with
a p-value of 0:094), suggesting that natural gas return volatility has a large and signi�cant
e¤ect on the change of the natural gas return.
Estimates of the variance equation coe¢ cients are reported in panel B of Table 5. We

�nd positive and statistically signi�cant ARCH and GARCH e¤ects, 0:552 with a p-value of
0:013 and 0:651 with a p-value of 0:000, respectively. In particular, we �nd that natural gas
return volatility reacts less intensely to natural gas return movements compared to the case
of oil and that shocks to the conditional variance are more persistent, rendering natural gas
return volatility less spiky compared to the case of oil return volatility. Moreover, we �nd
no signi�cant asymmetric e¤ects.
Panel C of Table 5 presents the log-likelihood values for models (4) and (6) and (5) and

(6), as well a range of statistics and diagnostic tests applied to the standardized residuals,
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in the same fashion as for oil in Table 4. These statistics and diagnostic tests suggest that
the standardized residuals, "̂t, are normally distributed and serially uncorrelated. We also
report the two structural break tests in panel D of Table 5, and �nd that there does not
exist a structural break in the series of natural gas returns.

3.3 Coal

Following the pattern established in the previous two subsections, we also construct two
GARCH models for coal, starting with a baseline AR (1) model

� ln ct = �0 + �1� ln ct�1 + "t (7)

where � ln ct is the �rst di¤erence of the logarithm of the coal price. Again, the number
of AR and MA terms in equation (7) was chosen using the Bayesian Information Criterion.
The second mean model for coal is an AR (1) model augmented with a GARCH-in-Mean
term

� ln ct = �0 + �1� ln ct�1 + �2ht + "t. (8)

The variance equation for each model is again an asymmetric GARCH (1,1)

ht = c0 + a1"
2
t�1 + b1ht�1 + d1"

2
t�1I"<0("t�1). (9)

Empirical estimates of models (7) and (9) and (8) and (9), using annual data from 1870
to 2014, are reported in Table 6, in the same fashion as those for oil and natural gas in Tables
4 and 5, respectively. Again we get consistent estimates across the baseline and the extended
model. Moreover, the GARCH-in-Mean coe¢ cient in the extended coal return equation (8)
is statistically insigni�cant and the ARCH and GARCH terms in the variance equation (9)
are both positive and statistically signi�cant, 1:057 with a p-value of 0:000 and 0:546 with a
p-value of 0:000, respectively. We also �nd negative but statistically insigni�cant asymmetric
e¤ects (�0:317 with a p-value of 0:345), and there is no evidence of a structural break in the
series of coal returns.

4 Multivariate Volatility Modelling

In this section we follow E�mova and Serletis (2014) and estimate a trivariate vector autore-
gressive moving average (VARMA), GARCH-in-Mean, BEKK model [see Engle and Kroner
(1995) for more details], which models natural gas, coal, and oil returns and volatilities as
a system. We prefer the VARMA framework because it allows us to capture features of
the data generating process in a more parsimonious way without adding a large number of
parameters or lagged variables. This formulation allows us to model the transmission of
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return volatility from one fuel to another, and estimate the e¤ects of volatility in any of the
three markets on the return of each fuel.
For the mean equation, we choose a trivariate VARMA (1,1) speci�cation in the �rst

di¤erences of the logarithms of the natural gas, coal, and oil prices (multiplied by 100)
forming the dependent variables

zt = a+ �zt�1 +	
p
ht +�et�1 + �t (10)

�tj
t�1 � (0, H t) , H t =

24 hgg;t hgc;t hgo;t
hcg;t hcc;t hco;t
hog;t hoc;t hoo;t

35
where 
t�1 is the information set available in period t� 1 and

zt =

24 � ln gt� ln ct
� ln ot

35 ; �t =

24 �g;t
�c;t
�o;t

35 ; ht =

24 hgg;t
hcc;t
hoo;t

35 ;

� =

24 
11 
12 
13

21 
22 
23

31 
32 
33

35 ; 	 =

24  11  12  13
 21  22  23
 31  32  33

35 ; � =

24 �11 �12 �13
�21 �22 �23
�31 �32 �33

35 .
In the trivariate model we use the �rst di¤erences of the logarithms of the three fuel prices.
The reason for using the �rst di¤erences of the logarithms is that we �nd no cointegration in
the log levels of the three fuel prices after implementing the Engle and Granger (1987) and
Johansen (1988) cointegaration tests (these results are available upon request). Also, we do
not consider structural breaks, since we have already shown that each fuel return does not
have a structural break.
For the variance equation, we use the asymmetric BEKK model introduced by Grier et

al. (2004). We choose the BEKK(1,1,1) speci�cation, which is a multivariate extension of
GARCH(1,1). The resulting variance equation is

H t = C
0C +B0H t�1B +A0�t�1�

0
t�1A+D

0ut�1u
0
t�1D (11)

whereC,B,A, andD are 3�3matrices withC being a triangular matrix to ensure positive
de�niteness ofH. This speci�cation allows past volatilities,H t�1, as well as lagged values of
��0 and uu0 to show up in estimating current volatilities of natural gas, coal, and oil returns.
The asymmetry vector ut�1 is de�ned by ut�1 = �t�1 � I�<0(�t�1) where � is the Hadamard
product. SinceH matrix is symmetric, equation (11) produces six unique equations modeling
the dynamic variances of natural gas, coal, and oil returns, as well the covariances between
them. We refrain from adding additional explanatory variables, since our model already
contains 30 mean equation parameters and 33 variance equation parameters, for a total of
63 free parameters.
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4.1 Empirical Estimates

The trivariate BEKK model formed by equations (10) and (11) was estimated in Estima
RATS (version 8.3) using quasi-MaximumLikelihood. We used the BFGS (Broyden, Fletcher,
Goldfarb & Shanno) estimation algorithm, which is recommended for GARCH models, com-
bined with the derivative-free Simplex pre-estimation method. Table 7 reports the coe¢ -
cients obtained (with p-values in parentheses), as well as key diagnostics for the standardized
residuals

zjt =
�jtp
hjt

for j = natural gas, coal, and oil.
The autoregressive coe¢ cients in the � matrix are signi�cant along the main diagonal,

suggesting that for each of the fuels, today�s return is a good predictor of tomorrow�s return.
In particular, natural gas returns will be high if they were high in the previous period,
whereas coal and crude oil returns will be low if they were high in the previous period.
Moreover, natural gas and oil returns experience signi�cant spillover e¤ects from each of the
other markets whereas coal returns only receive spillover e¤ect from the natural gas market.
The moving-average coe¢ cients along the diagonal of the � matrix are large and sig-

ni�cant, suggesting that the dynamics of fuel returns are consistent with a typical ARMA
process. In particular, only the natural gas return has a negative relationship with shocks
originating in its own market. Another interesting result is that there are spillover e¤ects
in the MA terms as well. The natural gas and oil returns receive spillover e¤ects form each
of the other markets. For example, an unexpected increase of one unit in the coal return is
associated with a 0:707 unit increase in the natural gas return in the next period. Similarly,
an unexpected increase of one unit in the oil return is associated with a 0:407 unit increase
in the natural gas return next period. We �nd that news in the natural gas and oil markets
have very little e¤ect on the coal market, suggesting that coal returns do not respond to
surprise developments in each of the natural gas and oil markets.
The estimates of the GARCH-in-Mean coe¢ cients matrix	 suggest that each of the fuel

returns is a¤ected by its own volatility. We �nd that only the natural gas return decreases
when its own volatility increases, suggesting that natural gas returns will be low if there is a
lot of uncertainty about the natural gas market. On the other hand, the returns of coal and
oil increase as their volatilities increase. Also, the volatility in each market not only a¤ects
its own return but also has spillover e¤ects on the other markets. For example, the natural
gas return will increase if the volatility of coal and oil returns increases. Interestingly, the
	 matrix shows that the response of each fuel return to the volatility in its own market and
the response of each fuel return to the volatility in the other market are totally opposite.
For example, the natural gas return decreases as its own volatility increases. However, the
natural gas return increases as the volatilities increase in the other markets. Moreover, this
pattern is also valid in the other two markets. Overall, we �nd that the volatility in each fuel
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return in�uences its own return. Moreover, the volatility shows signi�cant spillover e¤ects
across markets.
Finally, we note that the spillover e¤ects which we �nd in the autoregressive coe¢ cients,

moving-average coe¢ cients, and the GARCH-in-Mean coe¢ cients, are rather asymmetric
in terms of the sign of the coe¢ cients. This asymmetry could be found once we compare
the signi�cant coe¢ cients (with p values less than 0.05) which lay on the o¤-diagonal of
each of the �, � and 	 matrices. For example,  12 implies that the natural gas return
increases as the coal return volatility increases. The spillover e¤ect of natural gas return
volatility on the coal return is given by  21 and suggests the the coal return decreases as
the natural gas return volatility increases. Therefore, the spillover e¤ects of volatility on
return are asymmetric between the natural gas and coal markets. Moreover, this pattern
also exists when we look at 
12 and 
21, 
13 and 
31, �13 and �31, and  13 and  31. Obviously,
these asymmetries show up between the natural gas and coal markets and exists between
the natural gas and oil markets. Another interesting �nding is related to the spillover e¤ects
between the coal and oil markets. It is found the spillovers are unidirectional. For example,

32 implies that the oil return will be low if the coal return is high in the previous period.
However, the oil return in the previous period has no e¤ect on the coal return this period,
since 
23 is statistically insigni�cant. This pattern could be found in the � matrix as well.
Therefore, we mainly observe spillovers from coal to oil.
The asymmetry found in the spillover e¤ects given by the autoregressive coe¢ cients, the

moving-average coe¢ cients, and the GARCH-in-Mean coe¢ cients is in general consistent
with the economic explanation provided by Hossain and Serletis (2016) who investigate in-
terfuel substitution in the United States using annual price and quantity data over almost
the same sample period as in the present paper. They show that the elasticities of substi-
tution among oil, natural gas, and coal are positive and statistically signi�cant, indicating
substitutability and signi�cant interactions among the three primary energy sources.
The estimates for the variance equation show high and signi�cant ARCH coe¢ cients

along the main diagonal of the A matrix, except for the coal market. It suggests that
volatility is persistent in the natural gas and oil markets. In particular, the oil return has
the most persistent ARCH e¤ect, â33 = 1:085, implying an ARCH e¤ect of 1:0852. The o¤
diagonal elements of the A matrix indicate signi�cant spillover ARCH e¤ects as well. For
example, an unexpected change in the natural gas and coal returns will increase the volatility
of the oil return, since â13 = 1:127 (with a p-value of 0:000) and â23 = �1:081 (with a p-value
of 0:000). Also, an unexpected change in the coal return will increase the volatility of the
natural gas return (â21 = �0:589 with a p-value of 0:000). A particular �nding about ARCH
e¤ects is that the volatility of the coal return is a¤ected by shocks in the oil and natural gas
returns without responding to shocks in its own return. It implies that natural gas and oil
shocks play a dominant role in the coal return volatility.
The main diagonal coe¢ cients of the B matrix indicate that there are statistically signif-

icant GARCH e¤ects only in the markets of natural gas and oil. This phenomenon happens
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in the ARCH e¤ects as well. Moreover, the coal return volatility does not respond to the
volatility in natural gas and oil returns. Therefore, the coal return volatility can be mainly
explained by shocks in the natural gas and oil markets when we model the interactions among
the three fuel markets. Regarding spillover GARCH e¤ects, these e¤ects are only seen in the
oil market. It is found that the volatility in natural gas and coal returns will increase the
oil return volatility slightly, because the spillover GARCH e¤ect of natural gas (0:0762) and
the spillover GARCH e¤ect of coal (0:1062) are small and signi�cant.
Finally, the D matrix presents the asymmetric ARCH e¤ects in the fuel markets. The

diagonal coe¢ cients of theD matrix suggest that negative shocks (bad news) to fuel returns
are associated with more volatility in the natural gas and oil markets, compared with positive
shocks (good news). Moreover, some spillover ARCH e¤ects show asymmetries as well. The
natural gas return will be more volatile if there is a negative shock to the coal return rather
than a positive shock. In the case of coal, negative shocks to the natural gas and oil markets
are associated with more volatility in the coal returns, compared with positive shocks. In
the oil market, the oil return will be more volatile if there is a negative shock to the natural
gas return. Overall, we �nd that positive and negative shocks play di¤erent roles in the
volatility transmission across the three fuel markets.
Overall, the trivariate VARMA-BEKK model shows signi�cant interactions among the

three fuel returns, including spillovers from surprise return changes in one fuel to the return
volatility of another fuel. Thanks to the long span data set and the powerful VARMA-BEKK
model structure, we are able to not only detect these spillover e¤ects, but also estimate their
magnitude.

5 Conclusion

Fuel price and its return volatility are of great concern to market participants and policy-
makers. Being able to accurately forecast the volatility and predict its spillover e¤ects carries
direct implications for hedging and derivatives trading. Motivated by these considerations,
we estimate univariate and multivariate volatility models for the prices of three hydrocar-
bons � oil, natural gas, and coal � using the longest span data that have ever been studied
before. We contribute to the understanding of fuel price and fuel return volatility in en-
ergy markets, and suggest several e¤ective models that would be of use to energy market
participants, derivatives market participants, large energy consumers interested in hedging
strategies, and policymakers. In particular, the use of low frequency data over nearly a
100-year time horizon in this paper help us understand the interactions of energy markets
in the long term.
The optimal choice of the model would depend on the research question (e.g. forecasting

versus price and volatility spillovers). The advantage of the multivariate volatility model is
the potential to investigate the interactions among all three fuel prices, their returns, and
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their volatilities, which makes it possible for us to discover surprising and signi�cant spillover
e¤ects.
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Table 1. Summary statistics

p-values
Series Mean Variance Skewness kurtosis Normality

A. Log levels

Oil 1:385 2:295 0:000 0:167 0:000
Natural gas 3:566 2:868 0:131 0:004 0:003
Coal 1:574 1:831 0:008 0:005 0:000

B. First di¤erences of log levels

Oil 0:024 0:058 0:165 0:000 0:000
Natural gas 0:041 0:030 0:005 0:000 0:000
Coal 0:024 0:014 0:000 0:000 0:000

Note: Sample period, annual observations, 1870-2014 for oil and coal and 1919-2014 for
natural gas.



Table 2. Contemporaneous correlations between prices

A. Logged levels B. First di¤erences of log levels
Oil Natural gas Coal Oil Natural gas Coal

Oil 1 0:978 0:986 1 0:507 0:619
Natural gas 0:978 1 0:990 0:507 1 0:321
Coal 0:986 0:990 1 0:619 0:321 1

�2(3) = 724:811 �2(3) = 74:145

Note: Sample period, annual data, 1919-2014.
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Table 3. Unit Root and Stationary Tests

Test
Series ADF DF-GLS KPSS Decision

A. Logged levels

Oil �2:303 �0:866 0:530 I(1)
Natural gas �3:154 �2:054 0:304 I(1)
Coal �3:196 �1:539 0:458 I(1)

B. Logged �rst di¤erences

Oil �8:723 �8:846 0:049 I(0)
Natural gas �3:377 �3:138 0:116 I(0)
Coal �9:690 �9:710 0:061 I(0)

Notes: Sample period, annual observations, 1870-2014 for
oil and coal and 1919-2014 for natural gas.
The 1% and 5% critical values are �4:023 and �3:441
for the ADF test, �3:529 and �2:988 for the DF-GLS test,
and 0:216 and 0:146 for the KPSS test, respectively.



Table 4. Univariate GARCH oil models

GARCH model
Coe¢ cient Baseline Extended

A. Conditional mean equation

Constant 0:018 (0:364) 0:006 (0:591)
ht 0:418 (0:062)

B. Conditional variance equation

Constant 0:010 (0:217) 0:000 (0:280)
"2t�1 0:293 (0:262) 1:143 (0:000)
ht�1 0:622 (0:005) 0:612 (0:000)
"2t�1I"<0 ("t�1) �0:152 (0:463) �0:780 (0:011)

C. Standardized residual diagnostics

Mean 0:023 �0:021
Standard error 1:012 1:009
Variance 1:024 1:019
Skeweness (0:694) (0:571)
Kurtosis (0:000) (0:000)
Jarque-Bera (0:000) (0:000)
Q(10) (0:230) (0:075)
Q2(10) (0:983) (0:801)
Log likelihood 5:047 8:583

D. Structural break tests

Andrews-Quandt 1972 (0:388) 1892 (0:139)
Andrews-Ploberger 1972 (0:572) 1892 (0:126)

Notes: Sample period, annual data, 1870-2014.
Numbers in parentheses are p-values.



Table 5. Univariate GARCH natural gas models

GARCH model
Coe¢ cient Baseline Extended

A. Conditional mean equation

Constant 0:034 (0:026) 0:021 (0:238)
"t�1 0:446 (0:001) 0:433 (0:003)
"t�2 0:279 (0:013) 0:308 (0:009)
"t�3 0:319 (0:002) 0:327 (0:000)
ht 1:698 (0:094)

B. Conditional variance equation

Constant 0:000 (0:157) 0:000 (0:157)
"2t�1 0:525 (0:013) 0:552 (0:013)
ht�1 0:666 (0:000) 0:651 (0:000)
"2t�1I"<0 ("t�1) �0:212 (0:499) �0:206 (0:544)

C. Standardized residual diagnostics

Mean �0:005 �0:067
Standard error 0:999 0:999
Variance 0:998 0:998
Skeweness (0:331) (0:558)
Kurtosis (0:166) (0:097)
Jarque-Bera (0:219) (0:190)
Q(10) (0:109) (0:092)
Q2(10) (0:869) (0:897)
Log likelihood 75:139 76:439

D. Structural break tests

Andrews-Quandt 1985 (0:160) 1985 (0:158)
Andrews-Ploberger 1985 (0:152) 1985 (0:107)

Notes: Sample period, annual data, 1919-2014.
Numbers in parentheses are p-values.



Table 6. Univariate GARCH coal models

GARCH model
Coe¢ cient Baseline Extended

A. Conditional mean equation

Constant �0:009 (0:043) �0:010 (0:009)
� ln ct�1 0:209 (0:128) 0:143 (0:282)
ht 0:328 (0:349)

B. Conditional variance equation

Constant 0:000 (0:571) 0:000 (0:583)
"2t�1 1:075 (0:000) 1:057 (0:000)
ht�1 0:530 (0:000) 0:546 (0:000)
"2t�1I"<0 ("t�1) �0:280 (0:538) �0:317 (0:345)

C. Standardized residual (b") diagnostics
Mean 0:249 0:219
Standard error 0:971 0:978
Variance 0:942 0:957
Skeweness (0:000) (0:000)
Kurtosis (0:000) (0:001)
Jarque-Bera (0:000) (0:000)
Q(10) (0:448) (0:399)
Q2(10) (0:541) (0:569)
Log likelihood 120:747 121:215

D. Structural break tests

Andrews-Quandt 1969 (0:820) 1978 (0:674)
Andrews-Ploberger 1969 (0:658) 1978 (0:436)

Notes: Sample period, annual data, 1870-2014.
Numbers in parentheses are p-values.



Table 7. The trivariate VARMA, GARCH-in-Mean BEKK model for
natural gas, coal, and oil (in that order)

A. Conditional mean equation

Φ =

⎡⎣ −7351 (0000)−4949 (0001)
2086 (0041)

⎤⎦; Γ =
⎡⎣ 1097 (0000) −0664 (0000) −0205 (0000)
0282 (0000) −0554 (0000) 0060 (0105)
0817 (0000) −0803 (0000) −0609 (0000)

⎤⎦;

Ψ =

⎡⎣ −0239 (0000) 1263 (0000) 0066 (0011)
−0196 (0001) 1170 (0000) −0136 (0083)
−0830 (0000) −0275 (0087) 1014 (0000)

⎤⎦; Θ =
⎡⎣ −0848 (0000) 0707 (0000) 0407 (0000)
−0068 (0391) 0786 (0000) −0098 (0113)
−0757 (0000) 0209 (0004) 1231 (0000)

⎤⎦.

B. Residual diagnostics

Mean Variance (5) 2(5)

 −0160 1059 (0349) (0310)
 0065 0941 (0000) (0228)
 −0103 0983 (0183) (0828)

C. Conditional variance equation

C =

⎡⎣ −0066 (0850)4471 (0000) 5493 (0000)
1287 (0001) 1617 (0000) 0000 (0999)

⎤⎦; A =

⎡⎣ 0936 (0000) 0519 (0000) 1127 (0000)
−0589 (0000) −0023 (0627) −1081 (0000)
0046 (0183) 0162 (0000) 1085 (0000)

⎤⎦;

B =

⎡⎣ 0362 (0000) 0000 (0999) −0076 (0030)
0029 (0563) −0139 (0297) −0106 (0048)
−0040 (0147) 0050 (0337) 0249 (0000)

⎤⎦; D =

⎡⎣ 1430 (0000) 0272 (0000) 0877 (0000)
−0702 (0000) 0059 (0550) −0106 (0424)
0008 (0744) −0247 (0000) −0633 (0000)

⎤⎦.

Note: Sample period, annual data: 1919-2014. Numbers in parentheses are tail areas of tests.
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