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Abstract

I present a generalized dynamic model of firm behavior under rate of return regulation.

The modeled firm has access to multiple types of capital which are substitutes (imperfect

or perfect) in production. These capital inputs are differentiated based on durability and

heterogeneous marginal effects on the firm’s total cost of capital. This approach is kept

general but is motivated by the stylized shape of the bond yield curve, wherein high durability

(longer lived) assets command a higher required return on investment (higher bond yield).

The results indicate that a regulated firm (relative to an unregulated firm) will over or under-

invest in specific assets depending on their durability and the size of the assets marginal effect

on the cost of capital relative to the regulated rate of return.

Two specific sources of distortion in the capital structure are identified. The “yield curve”

effect pushes the firm further (relative to the unconstrained case) towards assets with a low

marginal contribution to the cost of capital, thus reducing the firm’s average cost of capital.

The “duration” effect pushes the firm towards longer lived assets as a means to inflate the

steady state capital stock. This is similar to (yet distinct from) the classic Averch and

Johnson (1962) result.
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1 Introduction

A simple, standard and powerful result from the neo-classical model of firm behavior is the

consistency between the input decisions of a profit-maximizing firm and the input decisions of a

cost-minimizing firm. A consequence of the rate of return model of economic regulation is that

it inadvertently ties a regulated firm’s profits directly to its input decisions, invalidating this

equivalence. Under a binding rate of return constraint, quantity and price choices do not affect

firm profits in the same way as in an unregulated market. In this article I show that a firm

subject to rate of return regulation can influence its profits in two ways: i) changing the margin

between its permitted rate of return and cost of capital by investing in capital assets which lower

its average cost of capital and ii) varying the total capital stock on which this margin is earned

by over-investing in high durability assets which increases its steady-state capital stock.

Despite the emergence of incentive-based regulatory mechanisms (chiefly price caps) over

the past half century, the rate of return methodology remains widely used. As indicated by

Blank and Mayo (2009), price cap schemes, regarded as a prominent alternative to rate of

return regulation, amount to a special case of the rate of return model with an institutionalized

regulatory lag. At a primal level the standard rate of return framework undergirds most practical

price regulation.1

The implicit objective of the rate of return model of economic regulation (and most economic

regulation in general) is to reduce or eliminate the dead-weight loss associated with the exercise

of market power. The intuition behind the rate of return approach is to impose a constraint on

behavior intended to force a firm to set a price approximating its average cost. Through this

mechanism a firm which would otherwise exercise market power is forced to mimic the behavior

of a firm acting in a more competitive environment insofar as pricing and output are concerned.

The rate of return constraint is essentially a constraint on the firm’s revenue net of variable costs.

The relative success of imposing the constraint (measured by the reduction in dead-weight loss)

depends on two elements and the interaction between them. The first is the accuracy of the

1Another common alternative to standard rate of return regulation is the use of Negotiated Settlements between
producers and consumers. In practice however, settlement outcomes are often based on, or are a modification of,
the existing rate of return framework they are replacing. See Fellows (2011)
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constraint (i.e. how close the regulated ‘fair’ rate of return is to the firm’s actual cost of capital).

The second is the degree of distortion in the firm’s cost function caused by the imposition of

the constraint. I take the accuracy of the rate-of-return constraint as given, and focus on the

distortion of the firm’s cost function implied by changes in the firm’s input demand functions.

The focus here is on the regulated firm’s departure from the cost minimizing input mix, not on

the overall reduction in dead-weight loss effected by imposing a rate of return constraint.

I construct and solve a model of firm behavior to identify the input demand functions of a

profit-maximizing firm subject to a rate of return constraint. The model is dynamic in continuous

time and includes an exogenous rate of return constraint and heterogeneous capital inputs

differentiated by durability. Incorporating dynamics into the model allows for capital inputs

to affect not just current production but also future costs and revenues. Less durable assets

draw down the value of the capital stock faster, leading to a lower steady state capital stock.

Changes in the average durability (and associated depreciation rate) of the asset stock also

affects the principle repayment schedule and the perceived risk of the firm. This in turn may

ultimately affect the firm’s average cost of capital.

I identify two distorting effects that arise from the imposition of a rate of return constraint.

The “duration” effect pushes the firm towards longer lived assets as a means to inflate the steady

state capital stock. Under an assumption of imperfect regulation this will lead to increased

profits as the larger capital stock will inflate the firm’s revenue cap proportionally more than

its costs. The “yield curve” effect pushes the firm further (relative to the unconstrained case)

towards short-lived capital inputs, thus lowering its risk profile and by extension its average cost

of capital. This has the effect of widening the margin between the regulated rate of return and

the firm’s average cost of capital.2

The remainder of the article is laid out as follows: Section 2 elaborates on the motivation

for the modeling excercise conducted here, referencing relevant literature on the rate of return

model, the capital durability choice faced by the firms and the resulting effect on capital costs.

Section 3 describes the construction of the model and compares the resulting constrained and

2The referenced reduction in average cost of capital does not imply a reduction in overall capital cost, as the
total stock of capital may or may not increase as a result of this shift.

4



unconstrained equilibrium. Section 4 concludes.

2 Further Motivation and Existing Literature

Starting with Averch and Johnson’s (1962) seminal work there has been a substantial volume

of analytical and empirical analysis on the subject of input distortions under rate of return

constraint.3 The model developed by Averch and Johnson indicates that a firm subject to a

binding but imperfect rate of return constraint (where the regulated rate of return exceeds

the firm’s true average cost of capital) will choose a higher capital-labor ratio relative to an

unconstrained firm for any output level.4 This result is commonly referred to as the Averch and

Johnson (or AJ) effect.

Katz (1983), Caputo and Partovi (2002) and others5 have used various techniques to ana-

lyze the original AJ-style model. These authors show that the AJ effect cannot be established

for a generalized version of the model due to the un-characterized sensitivity of the regulatory

constraint’s shadow value with respect to the choice variables. The most common ancillary as-

sumption imposed to overcome this limitation is some variation on imposing a revenue function

which generates isoquants concave in capital and labor. This assumption is often criticized be-

cause anecdotally we observe limited scope for capital-labor substitution in regulated industries.

The existing literature following from Averch and Johnson (1962) has generally focused on

the predicted capital-labor distortion. However, the setup of the AJ model to include a practial

rate of return constraint is much more important than its commonly understood result of capital-

labour distortion. Averch and Johnson’s model setup acknowledges the imperfect nature of a

practical rate of return constraint in that the regulated rate of return is exogenously specified

insofar as the firm’s input decisions are concerned.

The concept of a “cost of capital” is abstract and not directly observable by the regulator.

This implies that the regulator must use an estimate of the firm’s cost of capital to set the

3Google Scholar indicates approximately 2452 citations of the original Averch and Johnson (1962) article, over
1000 of which are in the last decade alone. I therefore limit myself to a selection of noteworthy citations.

4The logic is straightforward; a regulated firm faces a revenue cap based largely on the product of a regulated
rate of return and capital stock. Increasing capital inputs relative to labor inputs increases the revenue cap by a
greater amount than costs and therefore leads to higher profits relative to the cost minimizing case.

5Takayama (1969); Pressman and Caron (1971, 1973); Jorgenson (1972); Hodiri and Takayama (1973)
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regulated rate of return. In practice, this estimate is often based on a general base case and

may be indexed to the yield on a government bond with a risk adjustment.6

Unfortunately, despite the insightful and intuitive realization by Averch and Johnson, their

use of a static model fails to produce several important implications of this assumption. Their

model also only admits a single capital and a single labor input which means that the indicated

distortion (the AJ effect) is reliant on the aforementioned questionable assumption of capital

labor substitutability. Applying the important intuitive concept of imperfect regulation to a

static model with only two inputs severely limits its exploitation and this has evidently led

current developments in regulatory theory to become increasingly dismissive of the AJ approach.

The model presented below, with dynamic optimization by firms and an explicit treatment of

capital asset durability, generates new results and insights on the effect of an imperfect regulatory

constraint on inter-capital substitution patterns with respect to asset durability. Placing the

assumption of imperfect regulation in a dynamic model, the derived results do not rely on an

assumption of capital-labor substitution. Instead, the focus is on inter-capital substitution in

the revenue function. By this, I mean that the firm is assumed able to substitute between

heterogeneous capital inputs differentiated by durability.7

This model could be viewed as something of a reconciliation between the work of Averch and

Johnson (1962) who used a static model to examine input distortions under an imperfect rate

of return constraint and Rogerson (1992) who used a dynamic model to investigate depreciation

under a perfect rate of return constraint.

The most significant departure between the model I will present here and the aproaches of

Averch and Johnson (1962) and Rogerson (1992) is the consideration for hetereogenous capital

inputs differentiated by durability. This consideration is justified by two key insights. The first

is that, firms are able to and in fact do substitute between capital inputs with varying degrees

of durability. The second is that investments in assets with different degrees of durability may

differently affect the firm’s average cost of capital.

6For an example of this in practice, see: National Energy Board of Canada (1995).
7Elaborating on the capital labor substitution issue. The model developed below can accommodate, but does

not rely on, and assumption of Leontief production between Labor and capital inputs. See footnote 16 for a
technical description in the context of the model presented here.
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The first insight has been explored in the neo-classical investment literature with consider-

able effort devoted to identifying the determinants of a firm’s choice of capital-asset durability.

Starting with Awerbach (1979, 1983), Abel (1981) and Gibbons (1984) and continuing with

more recent work by Cohen and Hassett (1999) and Goolsbee (2004) the focus has been on

how different corporate tax regimes effect investment decisions in durable assets. In this litera-

ture the firm is generally allowed to choose a single capital asset class (with a single associated

durability/depreciation-rate) and the desired investment level. These models make an implicit

assumption that assets with different durabilities are perfectly substitutable in the firm’s pro-

duction/revenue function. I draw on this literature but allow for a general form of inter-asset

substitution (accommodating an assumption of imperfect substitutability in the firm’s revenue

function) between capital assets with different durabilities.

There are many ways a firm can substitute between low-durability and high-durability capital

inputs. For example, a firm could choose between additional machinery to increase capacity on

the factory floor and additional office equipment to better manage existing physical capacity.

Either of these investments would increase overall productive capacity. Because low-durability

office equipment is depreciated at a much faster rate than high-durability machinery, this choice

amounts to substituting between inputs with a low and high depreciation rate.

Another example is the substitution between pipeline diameter and compression in the nat-

ural gas transmission industry. Given the physics of compressible fluid flow, pressure and pipe

diameter produce a classic convex isoquant in the production of throughput (measured as cubic

feet per day).8 Allowing for maintenance costs, natural gas pipeline (the physical pipe in the

ground) is treated as having an indefinite physical life and is therefore depreciated over 40 years,

the longest period available under the general accepted accounting principles (GAAP). By com-

8Schroeder (2010) provides an equation governing one dimensional, compressible fluid flow, derived in part
from the Fanning friction equation. Using Schroeder’s generalized equation as a base, the fluid flow equation
can be simplified as: Q = D2.5 ·

√
(P 2
inlet − P 2

outlet) · Θ, where Q indicates cubic feet per day, Pinlet is the inlet
pressure (PSIA), Poutlet is the outlet pressure (PSIA) and Θ is a function of other parameters including the
length of the pipeline and the specific gravity of the gas being transported. Holding the pipe outlet pressure (and
other parameters) constant, the marginal rate of technical substitution between inlet pressure and diameter is

calculated as: MRTSPinlet,D = 2.5
P2
I −P

2
O

D·PI
. which indicates a convex isoquant for any level of output Q. Whereas

the associated isocost contour is unlikely to exhibit the classic linear shape, the associated optimum (or optima)
would certainly be interior and exhibit marginal trade-offs.
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parison compressor stations exhibit an average service life of between 20 and 25 years, with the

specific service life (and corresponding depreciation period) heavily influenced by the projected

gas load and run-times of the stations. Higher compression results in accelerated wear on the

compressor stations and by extension a reduction in the expected service life and depreciation

period of the asset.9 Here again, there is a choice between investment in the durable pipeline

and less durable compressor stations.10

The almost universal repair or replace decision faced by firms also represents a tradeoff in

terms of durability of assets. The decision to replace implies that the firm pays off it’s associated

liabilities and allows the current asset to fall off the books faster adding a new asset to the

capital stock, essentially resetting the depreciation clock. Conversely a decision to continue

repairing existing capital assets allows the long-lived asset to continue depreciating at a slower

rate. Continuing to repair existing assets would likely add smaller and shorter-lived assets to

the capital stock (in the form of replacement components and/or repair materials), with the net

effect being a lower average capital stock than if assets are more regularly replaced.11

Examples of the repair or replace decision are common and are faced by any mature firm

employing durable capital. One example detailed by Anderson (2005) is the decision faced by

nuclear power generators in timing the replacement of components of their steam generators.

Anderson finds that the standard prospective time-line for replacing key components of the steam

generator is between 19 and 25 years demonstrating considerable freedom in the repair/replace

decision.

Despite the heterogeneity of capital assets with respect to durability a common and con-

venient convention adopted in the regulatory literature is to associate all capital assets with a

single cost of capital unrelated to durability or depreciation rate. The conventionally recognized

9See: Westcoast Energy Inc’s (2003) Transmission Depreciation Study for an example of practical discussion
of these issues in the context of a regulated pipeline.

10The example here refers to substitutions made on a single physical pipeline, but it is simple to extend the
analysis to the case of building a second parallel line running through the same compressor stations. This is
referred to “looping” in the industry taxonomy.

11Unlike the previous two examples, the repair or replace decision is greatly impacted by the distinction between
physical depreciation and financial depreciation. Repairing an asset (i.e., regular maintenance), influences the
physical depreciation on an input by acting to preserve its productive capacity. However this change in physical
depreciation may or may not be reflected in the financial depreciation rate determined by the GAAP. I comment
further on this distinction in the model construction section below.
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“cost of capital” is itself short for the “weighted average cost of capital” where the weighting is

across a firm’s debt and equity (rather than across assets of different durabilities). Buranabun-

yut and Peoples (2012, p.186) assert that the input decisions of the firm are based on shadow

prices rather than actual prices. Following their assertion I abstract from the firm’s financing

decisions (choice of debt/equity ratio and bond duration) assuming that the regulated firm will

internalize the required financial market return as a shadow or opportunity cost of purchasing

any specific asset.12 I explicitly consider the required return to specific assets included in the

firm’s capital stock.

Awerbuch (1995) and Dew-Becker (2012) suggest that assets with different associated risks

and durations should be and in fact are discounted by firms at different rates. Awerbuch (1995)

illustrates these effects in the context of a cost-benefit analysis for a firm choosing between

capital projects with varying degrees of risk. He indicates that a firm conducting an appropriate

cost-benefit analysis should internalize the effect a risky investment will have on its overall cost

of capital.

Dew-Becker (2012) shows evidence of a similarly defined action on the part of firms. His

empirical analysis of U.S. industries indicates a strong relationship between changes in the shape

of the yield curve (i.e. the relative cost of long-term debt) and the investment decisions of firms

with respect to long-lived (more durable) and short-lived (less durable) assets. As expected, an

increase in the relative cost of long-term debt leads to a shift towards investment in short-lived

assets. Any model which applies a single exogenous cost of capital would completely ignore

these potentially important effects on investment decisions.

12The reasoning here is essentially the same as in the classic “Invariance Proposition” developed by Modigliani
and Miller (1961). In broad terms, I appeal directly to the “Invariance Proposition” insofar as capital financing
decisions are concerned. It is important to note that although the original Modigliani and Miller version of the
invariance proposition holds when applied to financing decisions, the application of the invariance proposition
to the choice of depreciation rate (or the choice between capital asset inputs with different deemed depreciation
rates) used in calculating the regulated revenue stream (as in Schmalensee (1989)) does not hold. Changing the
financing decisions between equity and debt does nothing to the present value of the income stream (the relevant
decision is simply how to distribute this stream). However, changing the regulated depreciation rate (or the choice
of capital inputs with different deemed depreciation rates) does have a direct effect on the present value of the
revenue stream due to the regulatory constraint and/or any productivity implications.

Spiegel (1997) notes that the vast majority of rate of return literature implicitly assumes full equity financing
(no debt). Some readers may wish to continue applying this assumption to the model below. Such interpretation
should not materially harm any of the intuition or implications of the model as long as the reader accepts the
general premise that each asset in the rate base can be associated with a distinct individual cost of capital
potentially related to the asset’s durability.
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Even though the explicit risk treatment of asset-specific discounting is convincing, I restrict

my examination of capital cost effects to the duration relationship identified by Dew-Becker

(2012). In the model below I explicitly treat each heterogeneous capital input (differentiated by

durability) as having potentially distinct marginal effects on the total capital cost.

The use of heterogeneous distinct marginal effects on the total capital cost is easily recon-

ciled with the convention of assuming a single cost of capital. New capital investments can be

considered to have a “direct” effect and an “indirect effect” on the firm’s total capital cost.

Considering that the total capital cost is defined as the product of the cost of capital and the

capital stock; the direct effect on capital cost comes from the change in the value of the capital

stock (consistent with the bulk of existing literature which treats capital as homogeneous). The

indirect effect, currently ignored, is the result of a change in the value of the single “cost of

capital” brought about by a change in the risk profile or repayment schedule of existing capital

stock. Given this description, the costs-of-capital can be aggregated into a weighted average

representing the conventional cost of capital, maintaining consistency between the two inter-

pretations. Appendix A provides a derivation showing this consistency. I reject the common

convention of referencing a single cost of capital, choosing instead to refer to costs-of-capital in

order to simplify the model construction and discussion of results.

Despite evidence indicating that long-term assets carry a higher proportional capital cost

(or positive infra-marginal effect on the average cost of capital), the model construction admits

arbitrary pairs of depreciation rates and costs-of-capital for an asset. This maintains generality

and avoids the need for a critical dependence on this assumption. Additional insight is gained

by assuming that the yield curve relationship holds for physical assets of different durations (as

illustrated by Table 1 and Figure 1 below), but the model’s general implications (Propositions

1 through 4) do not rely on this assumption.

3 The Model

The model distinguishes between productive stocks of capital inputs and the associated liabilities

(book values). The capital cost and revenue cap (under the rate of return constraint) are based
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on the book value (outstanding liability) of capital whereas incoming revenue is based on the

productive value. To maintain the distinction between reductions in the productive values and

associated liabilities, I introduce the taxonomy of depreciation and amortization. “Depreciation”

is defined here as the periodic deterioration or reduction in the productive capacity of a physical

asset whereas “Amortization” is defined as the rate of repayment of the liability associated with

the physical asset (this can also be though of as a persistent reduction in the book value of an

asset).

Distinct asset classes are represented in the model by the subscript i where i ∈ N . These

classes are determined by an asset’s a) productive quality (marginal product), b) depreciation

rate, c) amortization rate and d) specific cost of capital. ki represents the stock of an asset from

asset class i whereas Bi represents the associated liability.

I place two minimally restrictive assumptions on the elements of set N . First, it is assumed

that i ∈ N if and only if the associated ki is used in positive quantity by a firm when regulated

and/or unregulated. This definition helps to avoid dealing with irrelevant capital inputs which

generate corner solutions in both the constrained and unconstrained equilibrium. Second, I

assume that there are at least two distinct elements in the set N .13

The modeled firm is assumed to borrow to finance any and all asset purchases. For a given

asset class of type i a new investment is recorded as both an addition to the stock of physical

value of capital ki and as an addition to the firm’s associated liability Bi. Since borrowing is

assumed to directly offset asset purchases in any period t, the cost of new investments does

not appear explicitly in the cash flow equation. Rather, the cost of investment shows up in the

form of a principal repayment schedule wherein the stock of the firm’s liabilities is repaid to

the lenders over time along with a return on the currently outstanding liability. The net cash

flow for an asset i at the margin is the marginal revenue product it generates less the associated

amortization and interest payments.

13If there is only one element in the set N, then the model collapses to a something approximating a standard
AJ model (with added dynamics, which become largely irrelevant since the firm has only one feasible choice for
its average depreciation rate). This special case of the model makes no useful contribution to extant literature. I
direct interested readers to Caputo and Partovi (2002), who provide a generalized and comprehensive examination
of a the static AJ model.
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Under these assumptions, the firm’s net cash flow in any period can be given as:

Net Cash F low = F (Kt, Lt)−W · Lt −
∑
i∈N

((ri + αi) ·Bi,t) (1)

where the vector Kt is the set of capital inputs at time t (ki,t ∀i ∈ N). W and Lt represent the

standard wage and labor (at time t) input decision, respectively.14 αi is the amortization rate

for asset class i and ri is the specific cost of capital for asset class i.F (Kt, Lt) is a continuous

revenue function twice differentiable for each element of the set represented by Kt. The revenue

function is assumed jointly concave in all capital inputs.15,16

The rate of return constraint is defined as:

∑
i∈N

(S ·Bi,t) ≥ F (Kt, Lt)−WLt −
∑
i∈N

(αi ·Bi,t) (2)

where S is an exogenous rate of return set by the regulator. The firm acts to maximize net cash

flow defined by equation (1) subject to this constraint.

Closure of the model requires equations of motion for the two sets of state variables ki,t and

Bi,t. For computational ease, and to abstract from cost overrun or revenue shortfall discussions,

the equations of motion are specified in continuous time. In all of the equations of motion, a

dot above a variable (˙) indicates a time derivative. The set of equations of motion for ki,t are:

k̇i,t = Ii,t − δi · ki,t ∀i ∈ N (3)

where Ii,t are units of new capital investment by the firm and δi is the depreciation rate for asset

class i. By similar constructions the equations of motion for Bi are:

14I implicitly assume that W and Lt are a single scalar and variable, however the model is robust to including
a vector of differentiated labor inputs and associated wage rates in which case W and Lt would be vectors.

15More specifically the function F (Kt, Lt) is assumed to produce a negative definite Hessian Matrix, with

elements;

{
∂F (Kt,Lt)
∂ki,t

> 0 ; ∂2F (Kt,Lt)

∂k2i,t
< 0

}
∀i ∈ N and ∂2F (Kt,Lt)

∂ki,t∂ki,t
> 0 ∀i 6= j ∈ N

16 As indicated above, the model is robust to a Leontief relationship between capital and labor. Formally,
F (Kt, Lt) can take the form: F (Kt, Lt) = F (min {Lt, G(Kt)}) (where G(Kt) is some function of the vector Kt)
without loss of generality.
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Ḃi = Ii,t − αi ·Bi,t ∀i ∈ N (4)

As indicated above, the model is robust to any arbitrary pairing of αi and δi. It is possible

that αi = δi for all or some of the elements i ∈ N , however; the two are kept distinct in order

to accommodate situations wherein the principle repayment schedule associated with a liability

does not equal the underlying depreciation on the asset purchased.

From equations (1) through (4) the firm’s maximization program in continuous time is:

Max
Lt,Ii,t

∫ T

0


F (Kt, Lt)−WLt −

∑
i∈N

((ri + αi) ·Bi,t)

−λ

(
F (Kt, Lt)−WLt −

∑
i∈N

((S + αi) ·Bi,t)

)
 e−rf tdt

S.T. k̇i,t = Ii,t − δi · ki,t ∀i ∈N

Ḃi = Ii,t − αi ·Bi,t ∀i ∈N

ki,t ≥ 0 ∀i ∈N

Ii,t ≥ 0 ∀i ∈NS

where the newly introduced variable rf represents the discount rate taken as exogenous by the

firm.17 Two sets of non-negativity constraints are also included in the maximization program.

The non-negativity constraint on ki is intuitive while the additional non-negativity constraint on

Ii incorporates the potential for “sunk capital” to enter the model. The new set notation NS in

the last non-negativity constraint represents the subset of asset classes for which investment is

sunk (NS ⊆ N). I allow for an infinite time/planning horizon for the firm such that t ∈ [0,∞).

From this point on I drop all time subscripts (t), to simplify notation. I solve for an equilib-

rium to the maximization program outlined above through the use of a Current Value Hamil-

tonian function. Construction of the Current Value Hamiltonian consists of multiplying the

17rf is the firm’s discount rate on cash flow. Because there is no explicitly modeled risk in the net cash flow
equation, rf is assumed to be exogenous through time and is treated as a fixed short-term risk-free rate of return.
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objective function and it’s constraints by the term erf t and then combining them using standard

Lagrangian methods.18 The Current Value Hamiltonian representing the above maximization

program is given as:

H = F (K,L)−W · L−
∑
i∈N

((ri + αi) ·Bi)

−λ

(
F (K,L)−W · L−

∑
i∈N

((S + αi) ·Bi)

)

+
∑
i∈N

qi (Ii − δi · ki) +
∑
i∈N

ηi (Ii − αi ·Bi)

+
∑
i∈N

µi · ki +
∑
i∈NS

γi · Ii

(5)

where qi and ηi are the costate variables for the productive value and liability of each capital

stock i, and µi and γi are the Karush-Kuhn-Tucker multipliers associated with the non-negativity

constraints on capital inputs and investment.19,20

The corresponding first order conditions for the firm’s choice of L and Ii are given by equa-

tions (6) and (7):

∂F

∂L
= W (6)

qi + ηi + γi = 0 ∀i ∈ NS (7a)

qi + ηi = 0 ∀i ∈ N 6⊂ NS (7b)

The first order condition for the firm’s choice of labor is familiar and has the standard

(marginal revenue product equals marginal cost) interpretation. The first order conditions for

capital investments are not as easily interpreted. These conditions require that the co-state

18For more details see: Chiang (2000), section 8.2, pages 210-212.
19I ignore the non-negativity constraint on labor input, as it lends no useful insight into the model implications.
20Despite the revenue constraint, both the firm’s output, and it’s revenues are endogenous and jointly determined

by the level of capital investment. Since the firm must produce output sufficient to generate the revenues it is
allowed to collect under the rate-of-return constraint, there are no explicit minimum quality or quantity constraints
in equation (5).
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variables representing shadow values on productive capital and those representing shadow costs

of associated liabilities must balance at the firm’s optimum. In the case of sunk assets (equation

(7a)) the additional presence of the Lagrange multiplier (γi) represents the shadow value of the

constraint (Ii ≥ 0) when it is binding.

Given the methodology used to construct the Current Value Hamiltonian, the costate vari-

ables (qi and ηi) implicitly include the term erf t. With this in mind the maximum principal

conditions for the state variables ki and Bi are :

(1− λ) · ∂F
∂ki

+ µi − qi · δi = rfqi − q̇i ∀i ∈ N (8)

λS − ri − (1− λ) · αi − ηi · αi = rfηi − η̇i ∀i ∈ N (9)

In a standard neo-classical investment model, the absence of convex adjustment costs would

imply a direct jump to the steady state. Despite the absence of such adjustment costs here the

modeled firm cannot normally jump to the optimal levels for ki and Bi simultaneously.This is

due to the limitation that the firm has only one control variable (Ii) for every two state variables

(ki,Bi). Nevertheless, a stable, optimal steady state equilibrium exists. Appendix B provides

additional details on the dynamics of the system outside of the steady state as well as illustrating

that Ii = δik̂i where k̂i is the optimal steady state value of ki.

Imposing the feasible steady state condition such that q̇i = 0 and η̇i = 0 the maximum

principal conditions can be rewritten as in equations (10) and (11):

(1− λ) · ∂F
∂ki

+ µi = (rf + δi) · qi ∀i ∈ N (10)

λ · S − ri − (1− λ) · αi = (rf + αi) · ηi ∀i ∈ N (11)

Due to the non-negativity constraint on ki combined with the steady state condition that

Ii = δik̂i it is evident that at the steady state Ii ≥ 0 which implies that γi = 0 ∀i ∈ NS . As

such, equations (7a) and (7b) can be rewritten in the steady state as:
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qi + ηi = 0 ∀i ∈ N (12)

Combining equations (10) and (11) with equations (12), implies the following equilibrium

conditions for each asset class i:

∂̂F

∂ki
=

(
rf + δi
rf + αi

)
·
(
ri − λS
1− λ

+ αi

)
−
(

1

1− λ

)
µi ∀i ∈ N (13)

The hat ( ̂ ) over the left hand side of equation (13) denotes that this is the equilibrium

value for the partial derivative (marginal revenue product) for the constrained version of the

model. This equation implicitly defines the firm’s choice of capital stock for each asset class

i as a function of the model’s exogenous parameters. Taken together, the conditions for each

asset class i defined by equation (13) and the first order condition for labor determine the firm’s

profit-maximizing input choices.

The unconstrained equivalent of equation (13) is:

∂F

∂ki

∗
=

(
rf + δi
rf + αi

)
(ri + αi)− µi ∀i ∈ N (14)

where the star (∗) on the left hand side of the equation indicates that this is the unconstrained

profit maximizing value of the partial derivative. This equation is derived either by removing the

constraint from equation (5) and re-solving the equilibrium, or more directly by setting λ = 0

in equation (13).

As indicated above, theoretical work following from the AJ effect indicates that a characteri-

zation of that effect is dependent on the size of the shadow value on the constraint.21 Despite the

differences between the model constructed here, and the more traditional static AJ formulation,

the size of the Lagrange multiplier λ continues to play a vital role. Lemma 1 characterizes the

feasable range of values for λ:

Lemma 1 (Feasible Values for the Lagrange Multiplier). For the model defined by the current

21See Caputo and Partovi (2002) for a review and reconciliation of the analytical work characterizing the shadow
value on the rate of return constraint for a static Averch and Johnson (1962) style model.

16



value Hamiltonian in equation 5; if an equilibrium exists for the constrained version of the model,

then the equilibrium value of the Lagrange multiplier satisfies λ ∈ (0, 1)

See appendix C for the associated proof.22

I define a new set M ⊂ N where i ∈M if and only if k̂i > 0 and k∗i > 0. Use of this set along

with the result in lemma 1 allows further characterization of the existence of corner solutions in

the constrainted and unconstrained equilibria. Lemma 2 formalizes this characterization.

Lemma 2 (Corner Solutions in the Constrained and Unconstrained Model). For the model

defined by the current value Hamiltonian in equation 5; if both a constrained and unconstrained

equilibrium exist then ∀i ∈ N ;

• if S > ri : k̂i = 0 =⇒ k∗i = 0.

• if S < ri : k∗i = 0 =⇒ k̂i = 0.

• if S = ri : k̂i = 0 ⇔ k∗i = 0.

See appendix C for the associated proof.

Lemma 2 indicates that for capital with a low cost of capital (ri < S), a corner solution in

the constrained model implies a corner solution in the unconstrained model. That is, there is no

low cost of capital input used in the unconstrained case that is not used in the constrained case.

Lemma 2 also indicates that for capital with a high cost of capital (ki > S), a corner solution

in the unconstrained model implies a corner solution in the constrained model. That is, there is

no high cost of capital input used in the constrained case that is not used in the unconstrained

case.

Given the statetments in lemmas 1 and 2 the regulatory distortion can be characterized by

comparing equations (13) and (14). Proposition 1 details this distortion at a basic level.

Proposition 1 (Changes in Volumes of Capital Inputs from rate of return). From equations

(13) and (14); if both a constrained and unconstrained equilibrium exist for the maximization

22Together, equations (7) and (10) and lemma 1 imply that qi ≥ 0 and ηi ≤ 0 ∀i ∈ N . This is intuitive as
capital used in production should have a positive effect on the future profit stream whereas the liability of that
capital stock should have a negative effect on the future profit stream.
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problem represented by equation 5 then in response to a binding rate of return constraint a profit

maximizing firm will:

• increase its use of any capital asset (i ∈ N) with a cost of capital below the regulated rate

of return.

• maintain its use of any capital asset (i ∈ N) with a cost of capital equal the regulated rate

of return.

• decrease its use of any capital asset (i ∈ N) with a cost of capital above the regulated rate

of return.

See appendix C.1 for the associated proof.

Proposition 1 indicates that, for capital inputs with a cost of capital below the regulated

rate, the outcome under a dynamic model is consistent with the over-capitalization indicated

in the original AJ model. Whats more, because the model allows for multiple capital inputs,

the equilibrium defined by equations (6) and (13) are able to admit positive values of inputs for

which the cost of capital is above the regulated rate of return (ri > S).

Arguably the most prominent question examined in the analytical and empirical work follow-

ing from the original model presented in Averch and Johnson (1962) is that of over-capitalization.

Given the inclusion of heterogeneous capital inputs in this model, a discussion of the traditional

“over-capitalization” result requires consideration for the relative distortion of investment in

capital from each asset class.

Given the general case presented here it is impossible to fully characterize the relative total

size of the capital stock for a regulated and unregulated firm. A sufficient (but not necessary)

condition for aggregate over-capitalization is that S > max (ri) ∀i ∈ N . This condition implies,

via proposition 1, that: k̂i > k∗i ∀i ∈ N =⇒
∑
i∈N

(
k̂i

)
>
∑
i∈N

(k∗i ).

Continuing with the application of proposition 1, if max {ri∈N} > S > min {ri∈N} there

will be both downward biased and upward biased elements of the capital stock. In this case,

characterizing the bias in the aggregate capital stock requires complete information on the size

of the terms (ri − S) ∀i ∈ N as well as a specific functional form for the firm’s revenue function
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F (K,L). With these assumptions in place, the same logic used in the proof accompanying

proposition 1 can be employed to characterize the bias in the aggregate capital stock.

Absent the inclusion of heterogeneous capital, r > S would imply negative profits for a

regulated firm employing any positive quantity of capital. Allowing for heterogeneous capital

with different costs of capital the constrained firm may still find it profitable to employ a positive

quantity of ki when ri > S as long as the condition S ≥
(∑(

ri · B̂i
)
/
∑(

B̂i

))
holds.23

Thus, the last bulleted clause of proposition 1 is included not only for completeness, but also as

a potential outcome for some subset of the set of heterogeneous capital inputs N for which the

individual costs of capital are above the regulated rate of return.

Given the existence of multiple capital inputs we can further characterize the distortions by

examining the marginal rate of technical substitution (MRTS) at equilibrium for each pair of

inputs in the constrained and unconstrained cases.

In the remainder of this section I will use i ∈ N and j ∈ N to denote two different asset

classes (i 6= j).

Equation (15) is derived as a simple ratio of equations (10) evaluated for asset classes i and

j. It defines the equilibrium value of the marginal rate of technical substitution between any

two asset classes.24

M̂RTSi,j =

(̂
∂kj
∂ki

)
=

(rf + δi) (rf + αj)

(rf + δj) (rf + αi)

(
ri + αi − λ(S + αi)

rj + αj − λ(S + αi)

)
(15)

Either via a similar derivation from equation (14) or by setting λ = 0 in equation (15), the

equilibrium rate of substitution in the unconstrained case can be characterized as:

MRTS∗i,j =

(
∂kj
∂ki

)∗
=

(rf + δi) (rf + αj)

(rf + δj) (rf + αi)

(
ri + αi
rj + αj

)
(16)

A comparison of equations (15) and (16) will characterize differences in the marginal rate

23Recall that: B̂i = δi
αi
k̂i and that k̂i is a function of S. Thus the inequality referenced will produce a threshold

value of S, below which the firm will choose k̂i = 0 and cease to produce in the optimal steady state.
24Equation 15 draws from the derivatives of a revenue function F ( ), rather than directly from a production

function. However, for a single product firm, the definitions are identical.

(
δF
δki

)
(
δF
δkj

) =

(
δF
δQ

)(
δQ
δki

)
(
δF
δQ

)(
δQ
δkj

) =

(
δQ
δki

)
(
δQ
δkj

) =

MRTSi,j
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of technical substitution between heterogeneous capital inputs and by extension the volume

of these inputs in the constrained and unconstrained cases. This comparison requires a more

complete characterization of the endogenous variable λ, provided in lemma 3 and its associated

proof:

Lemma 3 (Stronger conditions on λ). For the model defined by the current value Hamiltonian

in equation 5; if an equilibrium exhibiting positive profits exists for the constrained version of

the model, then the equilibrium value of the Lagrange multiplier satisfies λ ∈ (0, λ), where λ is

the largest value that satisfies
(
λ ≤ ri+αi

S+αi

)
∀i ∈M .

See appendix C for the associated proof.

Imposing a simplifying set of assumptions on αi and αj as well as ri and rj and comparing

the second term on the right hand side of equations (15) and (16) illustrates two types of bias on

the firm’s input decisions resulting from a binding rate of return constraint. These are detailed

in propositions 2 and 3.

Proposition 2 (cost of capital Bias). From equations (15) and (16), assuming equal amorti-

zation rates (αi = αj);and differences in individual costs-of-capital (ri > rj); If an equilibrium

to the maximization problem represented by equation 5 exists, a binding rate of return con-

straint will lead a firm to increase its use of lower-cost capital inputs (kj) relative to its use of

higher-cost capital inputs (ki) for all i, j ∈ N , compared to an unconstrained firm.

See appendix C.2 for the associated proof.

Without a full examination of the proof behind proposition 2 its meaning is easily misun-

derstood. In general we expect that a profit maximizing firm facing the type of well behaved

revenue function described above will reduce its use of an input when faced with an increase in

that input’s costs (substituting away from high cost inputs towards low cost inputs). Proposition

2 is not a redundant restatement of this behavior.

In the unconstrained case, the rate of return earned on an asset is endogenous to the model.

The firm makes input decisions to maximize total profits, and the rate of return can then be

calculated by dividing these profits over the total capital stock. The profit maximizing input

decisions in the unconstrained case are based on marginal revenues and marginal costs only.
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In the constrained case, the rate of return is exogenously set by the regulator and is no longer

endogenous to the model. Faced with a rate of return constraint the firm is also concerned with

how input decisions act to tighten or relax this constraint. This distorts the standard marginal

revenue/marginal cost equalization and leads to the behavoir described by proposition 2 where

the firm shifts too far (relative to the unconstrained/cost-minimizing case) towards low cost

capital.

Taken together with the earlier assertion that longer duration assets are associated with

higher costs-of-capital, proposition 2 implies that a firm will shift towards lower-cost short-term

capital. As foreshadowed above, I dub this distortion as the “yield curve effect.” However, in

isolation the yield curve effect ignores the effect that differing amortization rates have on the

steady state liability associated with the productive capital stock and by extension the revenue

cap imposed under rate of return regulation.

Varying the amortization rates while holding the costs of capital constant between asset

classes illustrates another distortionary effect.

Proposition 3 (The Duration Effect). From equations (15) and (16), assuming differences in

the amortization rates of capital inputs (αi < αj); and equal costs of capital below the regulated

rate (S > ri = rj): If an equilibrium to the maximization problem represented by equation 5

exists; a binding rate of return constraint will lead a firm to increase its use of longer-lived

capital inputs (ki) relative to its use of short-lived capital inputs (kj) for all i, j ∈ N when

compared to an unconstrained firm.

See appendix C.3 for the associated proof.

Because it is the liability (or book value) of the firm’s capital assets that determines the

firm’s regulated revenue requirement (and by extension the regulated revenue cap and profits),

the allocation of investment between assets with different amortization rates will affect the firm’s

profits. Longer lived assets (those with lower depreciation rates) are preferred because they

remain on the books for longer, increasing the steady state capital stock. This increase in capital

stock relaxes the rate of return constraint and increases the revenue cap. An unregulated firm is

only concerned with amortization insofar as it affects the costs associated with an investment.
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This difference is the source of the distortion described by proposition 3.

Through propositions 1 and 3 the model indicates that a regulated firm will over-invest in any

capital with an individual cost of capital below the regulated rate, and that this over-investment

will be more pronounced for capital with lower amortization rates if all costs of capital are equal.

Propositions 2 and 3 are based on an inconsistent set of assumptions insofar as differences

in the costs-of-capital (ri ,rj) and amortization rates (αi, αj) are concerned. Proposition 1

continues to hold, although allowing for differences in both the costs-of-capital and the amorti-

zation rates (such that ri 6= rj and αi 6= αi) significantly complicates the analysis of the effects

identified by propositions 2 and 3.

As stated above, an observation of the yield curve indicates that lower amortization rates will

in general imply higher costs of capital. Imposing assumptions consistent with this assertion,

the duration effect and yield curve effect will drive the distortions in investment in opposite

directions insofar as asset duration is concerned. For a constrained firm, the duration effect

makes long-lived capital more attractive (relative to short lived capital) whereas the yield curve

effect makes short-lived capital more attractive (relative to long-lived capital). Proposition 4

characterizes the condition required for dominance of either effect given assumptions consistent

with the assertion that longer lived capital carries a higher cost of capital.

Proposition 4 (The Dominant Effect). From equations (15) and (16): If an equilibrium to the

maximization problem represented by equation 5 exists:

• If
(

(rj + αj)− (ri + αi) <
(riαj−rjαi)

S

)
, then:

(
k̂i
k̂j
<

k∗i
k∗j

)
; (Duration Effect Dominates)

• If
(

(rj + αj)− (ri + αi) >
(riαj−rjαi)

S

)
, then:

(
k̂i
k̂j
>

k∗i
k∗j

)
; (Yield Curve Effect Dominates)

• If
(

(rj + αj)− (ri + αi) =
(riαj−rjαi)

S

)
, then:

(
k̂i
k̂j

=
k∗i
k∗j

)
; (The Effects Exactly Offset)

See appendix C.4 for the associated proof.25

Thus, the direction of the bias with respect to asset duration is ambiguous but identifiable

for any pair of asset classes given information on the regulated rate of return, amortization rates

25Note that, implicitly by its statement, and following from the proof in appendix C.4 Proposition 2 does not
hold if k∗i + k∗j = 0.This is intuitive because we cannot compare proportional increases in the use of two variables
if they are used in zero quantities in the unconstrained case.
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and costs-of-capital. Table 1 exhibits a set of numerical examples to indicate the general pattern

of the dominant effect with respect to exogenous parameter values.26

Table 1: Numerical Examples for Proposition 4

Case Parameters Condition from Proposition 4 Dominant Effect
r2 r10 S Left Side Right Side

Base 2.5% 5% 6% −0.375 = −0.375 N/A

+∆S 2.5% 5% 7% −0.375 < −0.321 Duration
−∆S 2.5% 5% 5% −0.375 > −0.450 Yield Curve

+∆r10 2.5% 6% 6% −0.365 > −0.458 Yield Curve
−∆r10 2.5% 4% 6% −0.385 < −0.292 Duration

+∆r2 3.5% 5% 6% −0.385 < −0.358 Duration
−∆r2 1.5% 5% 6% −0.365 > −0.392 Yield Curve

α2 = 50% , α10 = 10%

The second and third rows (+∆S and −∆S) of table 1 show that (holding all other param-

eters constant) an increase in the exogenous regulated rate of return S will weaken the yield

curve effect relative to the duration effect, whereas a reduction in S has the opposite effect.

The fourth and fifth rows (+∆r10 and −∆r10) of table 1 show that, holding all other parame-

ters constant, a increase in the required return on long term capital (ten year in the case of table

1) will strengthen the yield curve effect relative to the duration effect. Likewise, a reduction in

r10 has the opposite effect.

Finally, the last two rows (+∆r1 and−∆r1) show that, holding all other parameters constant,

an increase in the required return on short term capital (two year in the case of table 1) will

weaken the yield curve effect relative to the duration effect. Again, the opposite is true, with a

reduction in r1 strengthening the amortization effect relative to the yield curve effect.

Fixing r10 at 5% and varying r2 and S (as an example) the relationship described in propo-

sition 4 is exposited graphically in Figure 1. As in the numerical examples in Table 1, increasing

S weakens the yield curve effect moving the firm into the range wherein the duration effect

dominates. As illustrated the duration effect is very likely to dominate if the regulated rate of

return is above the ten year bond yield (r10 = 5%). Figure 1 also shows that an increase in the

26The specific values used in the table are not directly based on empirical data; however, the values are generally
consistent with the range of estimated or observed corollaries found in the existing literature.
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Figure 1: Dominant Effect Areas
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short term bond yield rate (r2) also weakens the yield curve effect.

It is interesting to note that the specific characteristics of the revenue function and how ki

and kj enter into it have no bearing on the parameters that determine which effect is dominant.

Although the specifics of the revenue function have bearing on the severity or magnitude of

the two effects, the direction of any distortion is determined solely by the parameters listed in

proposition 4.

The magnitude of a distortion caused by either the yield curve effect or duration effect will

be greater for inputs with a high degree of substitutability. If two capital inputs enter linearly

in the production function then the constraint may potentially cause a shift between two corner

solutions (k∗i > 0; k∗j = 0 to k̂i = 0; k̂j > 0).

4 Conclusion

The model presented above serves as a step towards understanding the effect a rate of return

constraint has on a firm’s input decisions when accounting for dynamic effects and heterogeneous

capital. The results presented extend the standard AJ interpretation of over-capitalization and
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provide important new implications related to amortization and cost of capital considerations.

The assumptions underlying this model are arguably more realistic than the static workhorse

AJ model and the results are more directly applicable to real world regulation (where historical

investment and amortization decisions determine much of a firm’s revenue requirement and

ultimately the profits and regulated price).

The model implications are intriguing both in their similarity to and departures from the

implications of current theory. Proposition 1 implies that an effect similar to Averch-Johnson

style over-capitalization carries over to the dynamic model for any asset with a cost of capital

lower than the regulated rate of return, however; the model also presents novel contributions in

the area of input decisions between capital assets with different amortization rates and associated

capital cost characteristics. The characterized differences in the firm’s input demand functions

with and without the rate of return constraint also indicate that under reasonable assumptions

the regulated firm is not cost minimizing. Therefore, under the assumption of an imperfect rate

of return constraint (where the regulated ‘fair’ rate is above the firm’s true cost of capital) not

only is the effective price above the firm’s actual average cost, but the firm’s actual average cost

is above the cost minimizing average cost.

A Details on the Costs-of-Capital Approach

The standard convention in economics and finance is to refer to a single average cost of capital.

The capital cost implicitly defined by equation (1) can be made consistent with this conven-

tion with only a slight modification. Consider that the total capital cost can be given as:

Capital Cost = ra ·
∑

(Bi,t) where the new variable ra is the commonly referenced weighted

average cost of capital. The per unit change in total capital cost for a change in investment in

a specific asset class i can then be calculated as:

d [Capital Cost]

dBi,t
= ra︸︷︷︸

direct

+
∂ra
∂Bi,t

·
∑
i∈N

(Bi,t)︸ ︷︷ ︸
indirect

It is the indirect effect in the above differential that is commonly ignored by restricting
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capital investments to a homogeneous cost of capital.

Imposing the form ra =
∑
i∈N

(ri ·Bi,t) /
∑
i∈N

(Bi,t)), the total differential above can be simpli-

fied as:

d [Capital Cost]

dBi
= ra︸︷︷︸

direct

+ (ri − ra)︸ ︷︷ ︸
indirect

= ri

consistent with the costs-of-capital interpretation.

B Dynamics of the System

I present here a sketch for the proof of dynamic stability (convergence to the steady state)

for the optimal control problem described by the Hamiltonian given in equation (5). I begin

this sketch with an illustration that the system is stable in a subspace comprised of the state

variables. I then illustrate that, for each asset class (i ∈ N), the ratio of the liability (Bi) to

the productive value (ki) of capital is known. Finally I provide a simple phase diagram in ki,

Bi space illustrating that the system is stable around the optimal steady state equilibrium.

For each element in set N (the total set of distinct asset classes) there are 3 accompanying

dynamic variables: Ii,t, ki,t and Bi,t. Consider the lower dimension 2N subset of the dynamic

system composed of equations (3) and (4). The system can be written in the standard matrix

(Ẋ = Ax+ c):



k̇1

Ḃ1

k̇2

Ḃ2

...

k̇N

ḂN



=



−δ1 0 0 0 · · · 0 0

0 −α1 0 0 · · · 0 0

0 0 −δ2 0 · · · 0 0

0 0 0 −α2 · · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · −δN 0

0 0 0 0 · · · 0 −αN





k1

B1

k2

B2

...

kN

BN



+



I1

I1

I2

I2

...

IN

IN



The set of eigenvalues for this subspace can be characterized by the set of values for Λ which
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satisfy27: ∏
i∈N

[(δi + Λ) (αi + Λ)] = 0 =⇒ Λ ∈ {−δi} ∪ {−αi}

Thus the set of eigenvalues for the subspace dimension is uniformly negative. The system is

therefore stable in both of the state variables for each asset class via the standard stability

conditions. For any given level of the control variables Ii the state variables ki and Bi will

converge to a steady state.

The ratio of between ki and Bi in the steady state is fixed and can be derived for any given

level of investment. Consider a case in which investment in an asset class i is fixed through time

at a value Ī. In this situation, ki and Bi will each converge to a steady state where:

k̇i = 0 =⇒ 0 = ī− δiki =⇒ ki =
ī

δi

Ḃi = 0 =⇒ 0 = ī− αiBi =⇒ Bi =
ī

αi

 =⇒ Bi =
δi
αi
ki

Thus, a feasible path to the steady state exists. Full characterization of this path implies

that the firm will choose levels for the control variables Ii,t which will ensure that all ki and Bi

converge to the optimal steady state (k̂i, B̂i) following the maximization program outlined in

the main paper. At the optimal steady state Ii = δik̂i = αiB̂i =⇒ İi = 0.

Figure 2: Phase Diagram for Bi,ki when Ii = δik̂i = αiB̂i

Bi

ki

k̇i = 0

k̂i

Ḃi = 0B̂i

Bi

Bi =
δi
αi
ki

The phase diagram for the 2 dimensional subset ki, Bi of the system around the steady state

27This equation is derived by setting det (A− Λı) = 0 where A is the Jacobian matrix of the 2N system given
above and ı is the identity matrix.
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(i.e. when Ii = δik̂i = αiB̂i) is given in figure 2.

C Mathematical Appendix

Proof of Lemma 1. Arrow’s sufficiency conditions for the existence of an equilibrium requires

the Hamiltonian function to be jointly concave with respect to the state variables. Joint con-

cavity of ki and kj requires that:

|b1| =

∣∣∣∣∣∣∣
0 ∂H

∂ki

∂H
∂ki

∂2H
∂k2i

∣∣∣∣∣∣∣ = −
(
∂H

∂ki

)2

≤ 0

(which is satisfied for any input ki and function H) and

|b2| = −(1− λ)

[(
∂H

∂ki

)2 ∂2F

∂k2
j

+

(
∂H

∂kj

)2 ∂2F

∂k2
i

− 2
∂H

∂ki

∂H

∂kj

∂2F

∂ki∂kj

]
≥ 0

Where b1 and b2 are the first and second principle minors of the bordered Hessian of (5). ∂F
∂ki

>

0 ∀i ∈ N and the set of equations given in (10) imply: sign{∂H∂ki } ≡ sign{
∂H
∂kj
} ∀i, j ∈ N . Thus:

∂H
∂ki
· ∂H∂kj > 0 ∀i, j ∈ N . Imposing

{
∂2F
∂k2i

< 0 ; ∂2F
∂ki,t∂kj,t

≥ 0
}
∀ i ∈ N , the above relationship

implies λ < 1. A binding rate of return constraint implies λ > 0 via the standard Karesh-Kuhn-

Tucker conditions. Therefore λ ∈ (0, 1).

Proof of Lemma 2. From equations (13) and (14):

µ̂i =max

{[(
rf + δi
rf + αi

)
·
(
ri + αi −

(
λ

1− λ

)
(S − ri)

)
− ∂F

∂ki

∣∣∣∣
ki=0

]
(1− λ) , 0

}

µ∗i =max

{[(
rf + δi
rf + αi

)
· (ri + αi)−

∂F

∂ki

∣∣∣∣
ki=0

]
, 0

}

From lemma 1: λ ∈ (0, 1). Thus:

• If S > ri : µ̂i > 0 =⇒ µ∗i > 0, it follows that k̂i = 0 =⇒ k∗i = 0.

• If S < ri : µ∗i > 0 =⇒ µ̂i > 0, it follows that k∗i = 0 =⇒ k̂i = 0.
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• If S = ri : µ∗i > 0⇔ µ̂i > 0, it follows that k̂i = 0⇔ k∗i = 0.

Proof of Lemma 3. Via the definition of M : ki > 0 ∀i ∈ M . Imposing the condition(
∂F
∂ki
≥ 0 i ∈M

)
equation (13) implies: λ ≤

(
ri+αi
S+αi

)
∀i ∈ M if and only if λ ∈ (0, 1). From

lemma 1: λ ∈ (0, 1). Define λ as the largest value that satisfies
(
λ ≤ ri+αi

S+αi

)
∀i ∈ M . Then

λ ∈ (0, λ).

C.1

Proof of Proposition 1. Subtracting equation (14) from equation (13) forms a set of equal-

ities given by:

∂̂F

∂ki
− ∂F

∂ki

∗
= (ri − S)

(
λ

1− λ

)
∀i ∈M

(recall that µi = 0 ∀i ∈ M) Taking a linear approximation of the change on the left hand

side of the above set of equalities, the set can be given in matrix notation as: HK∆ = C

where H is the MxM Hessian matrix associated with the capital inputs i ∈ M of the revenue

function (F (K,L)), K∆ is an Mx1 vector composed of elements k̂i − k∗i and C is a vector of

values (ri − S)
(

λ
1−λ

)
. As a Hessian matrix, H is a symmetric Hermitian matrix. The function

F (K,L) is assumed jointly concave in all capital inputs such that H is a negative definite matrix

and xTHx < 0 for any real vector x. It follows that: KT
∆HK∆ = KT

∆C < 0

Note that the row and column orderings in the Hessian matrix H are arbitrary so long as

symmetry is maintained. As a negative definite matrix, all upper left symmetric sub-matrices

of H are themselves negative definite. Therefore the above equality holds for any sub-matrix of

H and the inequality set implies that:

(
k̂i − k∗i

)
·
(

(ri − S)

(
λ

1− λ

))
< 0 ∀i ∈M
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If an equilibrium exists, then via lemma 1: λ ∈ (0, 1), thus:



ri < S =⇒ (ri − S)

(
λ

1− λ

)
< 0 =⇒ k̂i > k∗i

ri > S =⇒ (ri − S)

(
λ

1− λ

)
> 0 =⇒ k̂i < k∗i

ri = S =⇒ (ri − S)

(
λ

1− λ

)
= 0 =⇒ k̂i = k∗i


∀i ∈M

To this point the proof is established for capital inputs i ∈ M . For the set {i ∈ N |i /∈M};

following directly from lemma 2 and the definition of the set N :


ri < S =⇒ k̂i > k∗i = 0

ri > S =⇒ k∗i > k̂i = 0

∀i ∈ N |i /∈M
Thus the set of inequalities holds for all i ∈ N :


ri < S =⇒ k̂i > k∗i

ri > S =⇒ k̂i < k∗i

ri = S =⇒ k̂i = k∗i


∀i ∈ N

C.2

Proof of Proposition 2 .

ri > rj

αi = αj = α

 =⇒ Srj + αrj < Sri + αri

=⇒ Srj + Sα− rirj − αri < Sri + Sα− rirj − αrj

=⇒ (S − ri)(rj + α) < (S − rj)(ri + α)
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From lemma 3, if an equilibrium exists: λ ∈ (0, λ).

(S − ri)(rj + α) < (S − rj)(ri + α)

λ ∈ (0, λ)

 =⇒ −λ(S − ri)(rj + α) > −λ(S − rj)(ri + α)

=⇒ (ri + α)(1− λ)− λ(S − ri)
(rj + α)(1− λ)− λ(S − rj)

>
ri + α

rj + α

=⇒ ri + αi − λ(S + αi)

rj + αj − λ(S + αj)
>
ri + αi
rj + αj

Substituting equations (15) and (16) for the left and right hand side of the above inequality

respectively, the inequality can be rewritten as:

{(̂
∂kj
∂ki

)
>
(
∂kj
∂ki

)∗}
∀i 6= j ∈ M (recall that

µ̂i = µ∗i = 0 if and only if i ∈M). Imposing declining marginal revenue product for both inputs:

(̂
∂kj
∂ki

)
>

(
∂kj
∂ki

)∗
∂F

∂ki
> 0 ∀i, j ∈ N

∂2F

∂k2
i

< 0 ∀i, j ∈ N


=⇒

{
k̂i

k̂j
<
k∗i
k∗j

}
∀i 6= j ∈M

Following directly from lemma 2 and the definition of the set N :

{
k∗j
k∗i

<
k̂j

k̂i

}
∀ {j ∈ N |j /∈M} , ∀i ∈M

although the fraction
k∗j
k∗i

is undefined ∀ {i, j ∈ N |i, j /∈M} Therefore, S > ri > rj and αi =

αj =⇒
{
k∗j
k∗i
<

k̂j

k̂i

}
∀i 6= j ∈ N if and only if k∗i + k∗j > 0 .

C.3

Proof of Proposition 3.

r = ri = rj

αi < αj

 =⇒ (S − r)(r + αj) > (S − r)(r + αi)
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From lemma 3, if an equilibrium exists λ ∈ (0, λ):

(S − r)(r + αj) > (S − r)(r + αi)

λ ∈ (0, λ)

 =⇒ −λ(S − r)(r + αj) < −λ(S − r)(r + αi)

=⇒ (r + αi)(1− λ)− λ(S − r)
(r + αj)(1− λ)− λ(S − r)

<
r + αi
r + αj

=⇒ ri + αi − λ(S + αi)

rj + αj − λ(S + αj)
<
ri + αi
rj + αj

Substituting equations (15) and (16) for the left and right hand side of the above inequality

respectively, the inequality can be rewritten as:

{(̂
∂kj
∂ki

)
<
(
∂kj
∂ki

)∗}
∀i 6= j ∈ M . Imposing

declining marginal revenue product for both inputs:

(̂
∂kj
∂ki

)
<

(
∂kj
∂ki

)∗
∂F

∂ki
> 0 ∀i, j ∈ N

∂2F

∂k2
i

< 0 ∀i, j ∈ N


=⇒

{
k̂i

k̂j
>
k∗i
k∗j

}
∀i 6= j ∈M

From lemma 2 if S = ri then i ∈M by definition. By extension, the only set of elements i that

satisfies S = ri and i ∈ N |i /∈ M is the null set. Therefore: r = ri = rj and αi < αj =⇒{
k̂i
k̂j
>

k∗i
k∗j

}
∀i 6= j ∈ N .

C.4

Proof of proposition 4.

(rj + αj)− (ri + αi) <
riαj − rjαi

S
=⇒ Srj + Sαj + αirj + αiαj < Sri + Sαi + riαj + αiαj

=⇒ (S + αi)(rj + αj) < (S + αj)(ri + αi)
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From lemma 1, if an equilibrium exists λ ∈ (0, λ):

(S + αi)(rj + αj) < (S + αj)(ri + αi)

λ ∈ (0, λ)


=⇒ (ri + αi)(rj + αj)− λ(S + αi)(rj + αj) > (ri + αi)(rj + αj)− λ(S + αj)(ri + αi)

=⇒ ri + αi − λ(S + αi)

rj + αj − λ(S + αj)
>
ri + αi
rj + αj

Substituting equations (15) and (16) for the left and right hand side of the above inequality

respectively, the inequality can be rewritten as:

{(̂
∂kj
∂ki

)
>
(
∂kj
∂ki

)∗}
∀i 6= j ∈ M . Imposing

declining marginal revenue product for both inputs:

(̂
∂kj
∂ki

)
>

(
∂kj
∂ki

)∗
∂F

∂ki
> 0 ∀i, j ∈ N

∂2F

∂k2
i

< 0 ∀i, j ∈ N


=⇒

{
k̂i

k̂j
<
k∗i
k∗j

}
∀i 6= j ∈M

The alternative effect; (rj + αj) − (ri + αi) < (riαj − rjαi)/S =⇒ k̂i
k̂j
>

k∗i
k∗j
∀i 6= j ∈ M

follows from a parallel proof wherein the direction of the inequities is reversed. The null effect;

(rj + αj) − (ri + αi) = (riαj − rjαi)/S =⇒ k̂i
k̂j

=
k∗i
k∗j
∀i 6= j ∈ M follows from a parallel

proof wherein an equality is substituted for the inequalities. Via lemma 2, using the same

logic as in the preceding proofs, these results can be generalized to elements i 6= j ∈ N unless

k∗i = k∗j = 0.
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